Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

85 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. clearWard, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell

Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.

Metal:

Ru

Ligand type:

Cp; Quinoline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Deallylation

Max TON:

33

ee:

---

PDB:

---

Notes:

---

Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation

We report on the synthesis of biotinylated (cyclopentadienone)iron tricarbonyl complexes, the in situ generation of the corresponding streptavidin conjugates and their application in asymmetric hydrogenation of imines and ketones.

Metal:

Fe

Ligand type:

CO; Cyclopentadienone

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

20

ee:

34

PDB:

---

Notes:

---

A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology

Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

14

ee:

11

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino acid; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

100

ee:

79

PDB:

---

Notes:

---

An Artificial Imine Reductase Based on the Ribonuclease S Scaffold

Metal:

Ir

Ligand type:

Amino acid; Cp*

Host protein:

Ribonuclease S

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Max TON:

4

ee:

18

PDB:

---

Notes:

---

An Artificial Metalloenzyme for Carbene Transfer Based on a Biotinylated Dirhodium Anchored Within Streptavidin

Metal:

Rh

Ligand type:

Carboxylate

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

~60

ee:

---

PDB:

---

Notes:

Cyclopropanation reaction was also performed in the E. coli periplasm.

Metal:

Rh

Ligand type:

Carboxylate

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

C-H insertion

Max TON:

~60

ee:

---

PDB:

---

Notes:

---

An Artificial Metalloenzyme for Olefin Metathesis

A Grubbs–Hoveyda type olefin metathesis catalyst, equipped with an electrophilic bromoacetamide group, was used to modify a cysteine-containing variant of a small heat shock protein from Methanocaldococcus jannaschii. The resulting artificial metalloenzyme was found to be active under acidic conditions in a benchmark ring closing metathesis reaction.

Metal:

Ru

Ligand type:

Carbene

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Olefin metathesis

Max TON:

25

ee:

---

PDB:

---

Notes:

RCM

An Enantioselective Artificial Suzukiase Based on the Biotin–Streptavidin Technology

Metal:

Pd

Ligand type:

Allyl; Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

88

ee:

80

PDB:

---

Notes:

---

Metal:

Pd

Ligand type:

Allyl; Carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

5

ee:

---

PDB:

---

Notes:

---

An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades

Metal:

Ir

Ligand type:

Cp*; Phenanthroline

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

>999

ee:

>99

PDB:

---

Notes:

---

Aqueous Olefin Metathesis: Recent Developments and Applications

Review

Notes:

---

Aqueous Oxidation of Alcohols Catalyzed by Artificial Metalloenzymes Based on the Biotin–Avidin Technology

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

200

ee:

---

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

230

ee:

---

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Bipyridine; C6Me6

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

173

ee:

---

PDB:

---

Notes:

---

Metal:

Rh

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

7.5

ee:

---

PDB:

---

Notes:

---

Metal:

Ir

Ligand type:

Bipyridine; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Alcohol oxidation

Max TON:

30

ee:

---

PDB:

---

Notes:

---

Artificial Metalloenzyme for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin

Metal:

V

Ligand type:

Water

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Genetic

Reaction:

Sulfoxidation

Max TON:

27

ee:

93

PDB:

---

Notes:

---

Artificial Metalloenzymes

Review

Notes:

Book chapter

Artificial Metalloenzymes as Selective Catalysts in Aqueous Media

Review

Notes:

---

Artificial Metalloenzymes Based on Biotin-Avidin Technology for the Enantioselective Reduction of Ketones by Transfer Hydrogenation

Metal:

Ru

Ligand type:

Amino-sulfonamide; P-cymene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

92

ee:

94

PDB:

---

Notes:

---

Metal:

Ru

Ligand type:

Amino-sulfonamide; Benzene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Max TON:

30

ee:

63

PDB:

---

Notes:

---

Artificial Metalloenzymes Based on the Biotin-Avidin Technology: Enantioselective Catalysis and Beyond

Review

Notes:

---

Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities

Review

Notes:

---

Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution

Review

Notes:

---

Artificial Metalloenzymes: Combining the Best Features of Homogeneous and Enzymatic Catalysis

Review

Notes:

---

Artificial Metalloenzymes: Enantioselective Catalysis and Beyond

Review

Notes:

---

Artificial Metalloenzymes for Asymmetric Allylic Alkylation on the Basis of the Biotin–Avidin Technology

Metal:

Pd

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Allylic alkylation

Max TON:

10

ee:

93

PDB:

---

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis Based on Biotin-Avidin

Metal:

Rh

Ligand type:

Phosphine

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Hydrogenation

Max TON:

---

ee:

96

PDB:

---

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin-Avidin Technology

Review

Notes:

Book chapter

Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin-Avidin Technology

Review

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis Based on the Noncovalent Incorporation of Organometallic Moieties in a Host Protein

Review

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis: Recent Advances

Review

Notes:

---

Artificial Metalloenzymes for Enantioselective Catalysis: The Phenomenon of Protein Accelerated Catalysis

Metal:

Rh

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

94

PDB:

---

Notes:

Reduction of acetamidoacrylic acid. 3.0-fold protein acceleration.

Metal:

Rh

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Hydrogenation

Max TON:

---

ee:

39

PDB:

---

Notes:

Reduction of acetamidoacrylic acid. 12.0-fold protein acceleration.

Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-(Strept)Avidin Technology

Metal:

Ru

Ligand type:

Carbene

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

14

ee:

---

PDB:

---

Notes:

RCM

Metal:

Ru

Ligand type:

Carbene

Host protein:

Avidin (Av)

Anchoring strategy:

Supramolecular

Optimization:

Chemical

Reaction:

Olefin metathesis

Max TON:

19

ee:

---

PDB:

---

Notes:

RCM

Artificial Metalloenzymes for the Diastereoselective Reduction of NAD+ to NAD2H

Metal:

Ir

Ligand type:

Amino-sulfonamide; Cp*

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

---

Max TON:

---

ee:

---

PDB:

---

Notes:

---

Artificial Metalloenzymes: Proteins as Hosts for Enantioselective Catalysis

Review

Notes:

---

Artificial Metalloenzymes: Reaction Scope and Optimization Strategies

Review

Notes:

---