85 publications
-
A Cell-Penetrating Artificial Metalloenzyme Regulates a Gene Switch in a Designer Mammalian Cell
-
Nat. Commun. 2018, 9, 10.1038/s41467-018-04440-0
Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin–streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.
Notes: ---
-
Achiral Cyclopentadienone Iron Tricarbonyl Complexes Embedded in Streptavidin: An Access to Artificial Iron Hydrogenases and Application in Asymmetric Hydrogenation
-
Catal. Lett. 2016, 146, 564-569, 10.1007/s10562-015-1681-6
We report on the synthesis of biotinylated (cyclopentadienone)iron tricarbonyl complexes, the in situ generation of the corresponding streptavidin conjugates and their application in asymmetric hydrogenation of imines and ketones.
Metal: FeHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
-
A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin−Streptavidin Technology
-
J. Am. Chem. Soc. 2013, 135, 5384-5388, 10.1021/ja309974s
Artificial metalloenzymes result from anchoring an active catalyst within a protein environment. Toward this goal, various localization strategies have been pursued: covalent, supramolecular, or dative anchoring. Herein we show that introduction of a suitably positioned histidine residue contributes to firmly anchor, via a dative bond, a biotinylated rhodium piano stool complex within streptavidin. The in silico design of the artificial metalloenzyme was confirmed by X-ray crystallography. The resulting artificial metalloenzyme displays significantly improved catalytic performance, both in terms of activity and selectivity in the transfer hydrogenation of imines. Depending on the position of the histidine residue, both enantiomers of the salsolidine product can be obtained.
Notes: ---
Notes: ---
-
An Artificial Imine Reductase Based on the Ribonuclease S Scaffold
-
ChemCatChem 2014, 6, 736-740, 10.1002/cctc.201300995
Dative anchoring of a piano‐stool complex within ribonuclease S resulted in an artificial imine reductase. The catalytic performance was modulated upon variation of the coordinating amino acid residues in the S‐peptide. Binding of Cp*Ir (Cp*=C5Me5) to the native active site resulted in good conversions and moderate enantiomeric excess values for the synthesis of salsolidine.
Notes: ---
-
An Artificial Metalloenzyme for Carbene Transfer Based on a Biotinylated Dirhodium Anchored Within Streptavidin
-
Cat. Sci. Technol. 2018, 8, 2294-2298, 10.1039/C8CY00646F
We report an artificial carbenoid transferase which combines a biotinylated dirhodium moiety within streptavidin scaffold.
Metal: RhLigand type: CarboxylateHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Cyclopropanation reaction was also performed in the E. coli periplasm.
Metal: RhLigand type: CarboxylateHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
An Artificial Metalloenzyme for Olefin Metathesis
-
Chem. Commun. 2011, 47, 12068, 10.1039/c1cc15005g
A Grubbs–Hoveyda type olefin metathesis catalyst, equipped with an electrophilic bromoacetamide group, was used to modify a cysteine-containing variant of a small heat shock protein from Methanocaldococcus jannaschii. The resulting artificial metalloenzyme was found to be active under acidic conditions in a benchmark ring closing metathesis reaction.
Metal: RuLigand type: CarbeneHost protein: Small heat shock protein from M. jannaschiiAnchoring strategy: CovalentOptimization: ---Notes: RCM
-
An Enantioselective Artificial Suzukiase Based on the Biotin–Streptavidin Technology
-
Chem. Sci. 2016, 7, 673-677, 10.1039/c5sc03116h
Introduction of a biotinylated monophosphine palladium complex within streptavidin affords an enantioselective artificial Suzukiase. Site-directed mutagenesis allowed the optimization of the activity and the enantioselectivity of this artificial metalloenzyme. A variety of atropisomeric biaryls were produced in good yields and up to 90% ee.
Metal: PdHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: PdHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
An NAD(P)H-Dependent Artificial Transfer Hydrogenase for Multienzymatic Cascades
-
J. Am. Chem. Soc. 2016, 138, 5781-5784, 10.1021/jacs.6b02470
Enzymes typically depend on either NAD(P)H or FADH2 as hydride source for reduction purposes. In contrast, organometallic catalysts most often rely on isopropanol or formate to generate the reactive hydride moiety. Here we show that incorporation of a Cp*Ir cofactor possessing a biotin moiety and 4,7-dihydroxy-1,10-phenanthroline into streptavidin yields an NAD(P)H-dependent artificial transfer hydrogenase (ATHase). This ATHase (0.1 mol%) catalyzes imine reduction with 1 mM NADPH (2 mol%), which can be concurrently regenerated by a glucose dehydrogenase (GDH) using only 1.2 equiv of glucose. A four-enzyme cascade consisting of the ATHase, the GDH, a monoamine oxidase, and a catalase leads to the production of enantiopure amines.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Aqueous Olefin Metathesis: Recent Developments and Applications
Review -
Beilstein J. Org. Chem. 2019, 15, 445-468, 10.3762/bjoc.15.39
Olefin metathesis is one of the most powerful C–C double-bond-forming reactions. Metathesis reactions have had a tremendous impact in organic synthesis, enabling a variety of applications in polymer chemistry, drug discovery and chemical biology. Although challenging, the possibility to perform aqueous metatheses has become an attractive alternative, not only because water is a more sustainable medium, but also to exploit biocompatible conditions. This review focuses on the progress made in aqueous olefin metatheses and their applications in chemical biology.
Notes: ---
-
Aqueous Oxidation of Alcohols Catalyzed by Artificial Metalloenzymes Based on the Biotin–Avidin Technology
-
J. Organomet. Chem. 2005, 690, 4488-4491, 10.1016/j.jorganchem.2005.02.001
Based on the incorporation of biotinylated organometallic catalyst precursors within (strept)avidin, we have developed artificial metalloenzymes for the oxidation of secondary alcohols using tert-butylhydroperoxide as oxidizing agent. In the presence of avidin as host protein, the biotinylated aminosulfonamide ruthenium piano stool complex 1 (0.4 mol%) catalyzes the oxidation of sec-phenethyl alcohol at room temperature within 90 h in over 90% yield. Gel electrophoretic analysis of the reaction mixture suggests that the host protein is not oxidatively degraded during catalysis.
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Avidin (Av)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloenzyme for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin
-
J. Am. Chem. Soc. 2008, 130, 8085-8088, 10.1021/ja8017219
Nature’s catalysts are specifically evolved to carry out efficient and selective reactions. Recent developments in biotechnology have allowed the rapid optimization of existing enzymes for enantioselective processes. However, the ex nihilo creation of catalytic activity from a noncatalytic protein scaffold remains very challenging. Herein, we describe the creation of an artificial enzyme upon incorporation of a vanadyl ion into the biotin-binding pocket of streptavidin, a protein devoid of catalytic activity. The resulting artificial metalloenzyme catalyzes the enantioselective oxidation of prochiral sulfides with good enantioselectivities both for dialkyl and alkyl-aryl substrates (up to 93% enantiomeric excess). Electron paragmagnetic resonance spectroscopy, chemical modification, and mutagenesis studies suggest that the vanadyl ion is located within the biotin-binding pocket and interacts only via second coordination sphere contacts with streptavidin.
Metal: VLigand type: WaterHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: GeneticNotes: ---
-
Artificial Metalloenzymes
Review -
Effects of Nanoconfinement on Catalysis 2017, 49-82, 10.1007/978-3-319-50207-6_3
While chemists are developing confined environments for catalysis, nature has evolved highly elaborate compartments to carry out reactions. Proteins offer such catalytic nano-environments that accept specific substrates to yield highly enantioenriched products. Metalloenzymes form a subclass that combines the functional diversity of proteins with the promiscuous activities of metals. In recent years, a variety of artificial metalloenzymes (ArMs) has been created upon incorporation of metal complexes into a protein scaffold. The following chapter discusses some of the protein scaffolds exploited for the creation of artificial metalloenzymes. Focus is laid on artificial metalloenzymes that catalyze abiotic and asymmetric reactions. Each subchapter presents the unique characteristics of a scaffold followed by a description of the reactions that were performed with it.
Notes: Book chapter
-
Artificial Metalloenzymes as Selective Catalysts in Aqueous Media
Review -
Coord. Chem. Rev. 2008, 252, 751-766, 10.1016/j.ccr.2007.09.016
The fusion of homogeneous and enzymatic catalysis has recently drawn attention due to reported novel activities and high selectivities. The incorporation of metal-catalysts into proteins combines the advantages of both catalytic strategies. Herein we summarize recent approaches of artificial metalloenzymes applied to catalysis. The discussion includes different strategies of anchoring and screening for improved selectivity.
Notes: ---
-
Artificial Metalloenzymes Based on Biotin-Avidin Technology for the Enantioselective Reduction of Ketones by Transfer Hydrogenation
-
Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 4683-4687, 10.1073/pnas.0409684102
Most physiological and biotechnological processes rely on molecular recognition between chiral (handed) molecules. Manmade homogeneous catalysts and enzymes offer complementary means for producing enantiopure (single-handed) compounds. As the subtle details that govern chiral discrimination are difficult to predict, improving the performance of such catalysts often relies on trial-and-error procedures. Homogeneous catalysts are optimized by chemical modification of the chiral environment around the metal center. Enzymes can be improved by modification of gene encoding the protein. Incorporation of a biotinylated organometallic catalyst into a host protein (avidin or streptavidin) affords versatile artificial metalloenzymes for the reduction of ketones by transfer hydrogenation. The boric acid·formate mixture was identified as a hydrogen source compatible with these artificial metalloenzymes. A combined chemo-genetic procedure allows us to optimize the activity and selectivity of these hybrid catalysts: up to 94% (R) enantiomeric excess for the reduction of p-methylacetophenone. These artificial metalloenzymes display features reminiscent of both homogeneous catalysts and enzymes.
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
Metal: RuHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloenzymes Based on the Biotin-Avidin Technology: Enantioselective Catalysis and Beyond
Review -
Acc. Chem. Res. 2011, 44, 47-57, 10.1021/ar100099u
Artificial metalloenzymes are created by incorporating an organometallic catalyst within a host protein. The resulting hybrid can thus provide access to the best features of two distinct, and often complementary, systems: homogeneous and enzymatic catalysts. The coenzyme may be positioned with covalent, dative, or supramolecular anchoring strategies. Although initial reports date to the late 1970s, artificial metalloenzymes for enantioselective catalysis have gained significant momentum only in the past decade, with the aim of complementing homogeneous, enzymatic, heterogeneous, and organic catalysts. Inspired by a visionary report by Wilson and Whitesides in 1978, we have exploited the potential of biotin−avidin technology in creating artificial metalloenzymes. Owing to the remarkable affinity of biotin for either avidin or streptavidin, covalent linking of a biotin anchor to a catalyst precursor ensures that, upon stoichiometric addition of (strept)avidin, the metal moiety is quantitatively incorporated within the host protein. In this Account, we review our progress in preparing and optimizing these artificial metalloenzymes, beginning with catalytic hydrogenation as a model and expanding from there. These artificial metalloenzymes can be optimized by both chemical (variation of the biotin−spacer−ligand moiety) and genetic (mutation of avidin or streptavidin) means. Such chemogenetic optimization schemes were applied to various enantioselective transformations. The reactions implemented thus far include the following: (i) The rhodium-diphosphine catalyzed hydrogenation of N-protected dehydroaminoacids (ee up to 95%); (ii) the palladium-diphosphine catalyzed allylic alkylation of 1,3-diphenylallylacetate (ee up to 95%); (iii) the ruthenium pianostool-catalyzed transfer hydrogenation of prochiral ketones (ee up to 97% for aryl-alkyl ketones and ee up to 90% for dialkyl ketones); (iv) the vanadyl-catalyzed oxidation of prochiral sulfides (ee up to 93%). A number of noteworthy features are reminiscent of homogeneous catalysis, including straightforward access to both enantiomers of the product, the broad substrate scope, organic solvent tolerance, and an accessible range of reactions that are typical of homogeneous catalysts. Enzyme-like features include access to genetic optimization, an aqueous medium as the preferred solvent, Michaelis−Menten behavior, and single-substrate derivatization. The X-ray characterization of artificial metalloenzymes provides fascinating insight into possible enantioselection mechanisms involving a well-defined second coordination sphere environment. Thus, such artificial metalloenzymes combine attractive features of both homogeneous and enzymatic kingdoms. In the spirit of surface borrowing, that is, modulating ligand affinity by harnessing existing protein surfaces, this strategy can be extended to selectively binding streptavidin-incorporated biotinylated ruthenium pianostool complexes to telomeric DNA. This application paves the way for chemical biology applications of artificial metalloenzymes.
Notes: ---
-
Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities
Review -
Acc. Chem. Res. 2016, 49, 1711-1721, 10.1021/acs.accounts.6b00235
The biotin–streptavidin technology offers an attractive means to engineer artificial metalloenzymes (ArMs). Initiated over 50 years ago by Bayer and Wilchek, the biotin–(strept)avidin techonology relies on the exquisite supramolecular affinity of either avidin or streptavidin for biotin. This versatile tool, commonly referred to as “molecular velcro”, allows nearly irreversible anchoring of biotinylated probes within a (strept)avidin host protein. Building upon a visionary publication by Whitesides from 1978, several groups have been exploiting this technology to create artificial metalloenzymes. For this purpose, a biotinylated organometallic catalyst is introduced within (strept)avidin to afford a hybrid catalyst that combines features reminiscent of both enzymes and organometallic catalysts. Importantly, ArMs can be optimized by chemogenetic means. Combining a small collection of biotinylated organometallic catalysts with streptavidin mutants allows generation of significant diversity, thus allowing optimization of the catalytic performance of ArMs. Pursuing this strategy, the following reactions have been implemented: hydrogenation, alcohol oxidation, sulfoxidation, dihydroxylation, allylic alkylation, transfer hydrogenation, Suzuki cross-coupling, C–H activation, and metathesis. In this Account, we summarize our efforts in the latter four reactions. X-ray analysis of various ArMs based on the biotin–streptavidin technology reveals the versatility and commensurability of the biotin-binding vestibule to accommodate and interact with transition states of the scrutinized organometallic transformations. In particular, streptavidin residues at positions 112 and 121 recurrently lie in close proximity to the biotinylated metal cofactor. This observation led us to develop a streamlined 24-well plate streptavidin production and screening platform to optimize the performance of ArMs. To date, most of the efforts in the field of ArMs have focused on the use of purified protein samples. This seriously limits the throughput of the optimization process. With the ultimate goal of complementing natural enzymes in the context of synthetic and chemical biology, we outline the milestones required to ultimately implement ArMs within a cellular environment. Indeed, we believe that ArMs may allow signficant expansion of the natural enzymes’ toolbox to access new-to-nature reactivities in vivo. With this ambitious goal in mind, we report on our efforts to (i) activate the biotinylated catalyst precursor upon incorporation within streptavidin, (ii) minimize the effect of the cellular environment on the ArM’s performance, and (iii) demonstrate the compatibility of ArMs with natural enzymes in cascade reactions.
Notes: ---
-
Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution
Review -
Acc. Chem. Res. 2019, 52, 585-595, 10.1021/acs.accounts.8b00618
Artificial metalloenzymes (ArMs) result from anchoring a metal-containing moiety within a macromolecular scaffold (protein or oligonucleotide). The resulting hybrid catalyst combines attractive features of both homogeneous catalysts and enzymes. This strategy includes the possibility of optimizing the reaction by both chemical (catalyst design) and genetic means leading to achievement of a novel degree of (enantio)selectivity, broadening of the substrate scope, or increased activity, among others. In the past 20 years, the Ward group has exploited, among others, the biotin–(strept)avidin technology to localize a catalytic moiety within a well-defined protein environment. Streptavidin has proven versatile for the implementation of ArMs as it offers the following features: (i) it is an extremely robust protein scaffold, amenable to extensive genetic manipulation and mishandling, (ii) it can be expressed in E. coli to very high titers (up to >8 g·L–1 in fed-batch cultures), and (iii) the cavity surrounding the biotinylated cofactor is commensurate with the size of a typical metal-catalyzed transition state. Relying on a chemogenetic optimization strategy, varying the orientation and the nature of the biotinylated cofactor within genetically engineered streptavidin, 12 reactions have been reported by the Ward group thus far. Recent efforts within our group have focused on extending the ArM technology to create complex systems for integration into biological cascade reactions and in vivo. With the long-term goal of complementing in vivo natural enzymes with ArMs, we summarize herein three complementary research lines: (i) With the aim of mimicking complex cross-regulation mechanisms prevalent in metabolism, we have engineered enzyme cascades, including cross-regulated reactions, that rely on ArMs. These efforts highlight the remarkable (bio)compatibility and complementarity of ArMs with natural enzymes. (ii) Additionally, multiple-turnover catalysis in the cytoplasm of aerobic organisms was achieved with ArMs that are compatible with a glutathione-rich environment. This feat is demonstrated in HEK-293T cells that are engineered with a gene switch that is upregulated by an ArM equipped with a cell-penetrating module. (iii) Finally, ArMs offer the fascinating prospect of “endowing organometallic chemistry with a genetic memory.” With this goal in mind, we have identified E. coli’s periplasmic space and surface display to compartmentalize an ArM, while maintaining the critical phenotype–genotype linkage. This strategy offers a straightforward means to optimize by directed evolution the catalytic performance of ArMs. Five reactions have been optimized following these compartmentalization strategies: ruthenium-catalyzed olefin metathesis, ruthenium-catalyzed deallylation, iridium-catalyzed transfer hydrogenation, dirhodium-catalyzed cyclopropanation and carbene insertion in C–H bonds. Importantly, >100 turnovers were achieved with ArMs in E. coli whole cells, highlighting the multiple turnover catalytic nature of these systems.
Notes: ---
-
Artificial Metalloenzymes: Challenges and Opportunities
Review -
ACS Cent. Sci. 2019, 5, 1120-1136, 10.1021/acscentsci.9b00397
Artificial metalloenzymes (ArMs) result from the incorporation of an abiotic metal cofactor within a protein scaffold. From the earliest techniques of transition metals adsorbed on silk fibers, the field of ArMs has expanded dramatically over the past 60 years to encompass a range of reaction classes and inspired approaches: Assembly of the ArMs has taken multiple forms with both covalent and supramolecular anchoring strategies, while the scaffolds have been intuitively selected and evolved, repurposed, or designed in silico. Herein, we discuss some of the most prominent recent examples of ArMs to highlight the challenges and opportunities presented by the field.
Notes: ---
-
Artificial Metalloenzymes: Combining the Best Features of Homogeneous and Enzymatic Catalysis
Review -
Synlett 2009, 2009, 3225-3236, 10.1055/s-0029-1218305
By combining homogeneous with enzymatic catalysis, artificial metalloenzymes offer new perspectives for conferring unnatural activities to biomolecules. The article reassembles the important advances in the field of these hybrid catalysts and summarizes the contributions of our group to this continuously growing field of research.
Notes: ---
-
Artificial Metalloenzymes for Asymmetric Allylic Alkylation on the Basis of the Biotin–Avidin Technology
-
Angew. Chem. Int. Ed. 2008, 47, 701-705, 10.1002/anie.200703159
Palladium in the active site: The incorporation of a biotinylated palladium diphosphine within streptavidin yielded an artificial metalloenzyme for the title reaction (see scheme). Chemogenetic optimization of the catalyst by the introduction of a spacer (red star) between biotin (green triangle) and palladium and saturation mutagenesis at position S112X afforded both R‐ and S‐selective artificial asymmetric allylic alkylases.
Metal: PdLigand type: PhosphineHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloenzymes for Enantioselective Catalysis Based on Biotin-Avidin
-
J. Am. Chem. Soc. 2003, 125, 9030-9031, 10.1021/ja035545i
Homogeneous and enzymatic catalysis offer complementary means to generate enantiomerically pure compounds. Incorporation of achiral biotinylated rhodium−diphosphine complexes into (strept)avidin yields artificial metalloenzymes for the hydrogenation of N-protected dehydroamino acids. A chemogenetic optimization procedure allows one to produce (R)-acetamidoalanine with 96% enantioselectivity. These hybrid catalysts display features reminiscent both of enzymatic and of homogeneous systems.
Metal: RhLigand type: PhosphineHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin-Avidin Technology
Review -
Chimia 2008, 62, 956-961, 10.2533/chimia.2008.956
Artificial metalloenzymes, based on the incorporation of a biotinylated catalytically active organometallic moiety within streptavidin, offer an attractive alternative to homogeneous, heterogeneous and enzymatic catalysis. In this account, we outline our recent results and implications in the developments of such artificial metalloenzymes for various asymmetric transformations, including hydrogenation, transfer hydrogenation, allylic alkylation and sulfoxidation.
Notes: ---
-
Artificial Metalloenzymes for Enantioselective Catalysis Based on the Biotin-Avidin Technology
Review -
Top. Organomet. Chem. 2009, 10.1007/3418_2008_3
Artificial metalloenzymes can be created by incorporating an active metal catalyst precursor in a macromolecular host. When considering such artificial metalloenzymes, the first point to address is how to localize the active metal moiety within the protein scaffold. Although a covalent anchoring strategy may seem most attractive at first, supramolecular anchoring strategy has proven most successful thus far. In this context and inspired by Whitesides’ seminal paper, we have exploited the biotin–avidin technology to anchor a biotinylated active metal catalyst precursor within either avidin or streptavidin. A combined chemical and genetic strategy allows a rapid (chemogenetic) optimization of both the activity and the selectivity of the resulting artificial metalloenzymes. The chiral environment, provided by second coordination sphere interactions between the metal and the host protein, can be varied by introduction of a spacer between the biotin anchor and the metal moiety or by variation of the ligand scaffold. Alternatively, mutagenesis of the host protein allows a fine tuning of the activity and the selectivity. With this protocol, we have been able to produce artificial metalloenzymes based on the biotin–avidin technology for the enantioselective hydrogenation of N-protected dehydroaminoacids, the transfer hydrogenation of prochiral ketones as well as the allylic alkylation of symmetric substrates. In all cases selectivities >90% were achieved. Most recently, guided by an X-ray structure of an artificial metalloenzyme, we have extended the chemogenetic optimization to a designed evolution scheme. Designed evolution combines rational design with combinatorial screening. In this chapter, we emphasize the similarities and the differences between artificial metalloenzymes and their homogeneous or enzymatic counterparts.
Notes: Book chapter
-
Artificial Metalloenzymes for Enantioselective Catalysis Based on the Noncovalent Incorporation of Organometallic Moieties in a Host Protein
Review -
Chem. - Eur. J. 2005, 11, 3798-3804, 10.1002/chem.200401232
Enzymatic and homogeneous catalysis offer complementary means to produce enantiopure products. Incorporation of achiral, biotinylated aminodiphosphine–rhodium complexes in (strept)avidin affords enantioselective hydrogenation catalysts. A combined chemogenetic procedure allows the optimization of the activity and the selectivity of such artificial metalloenzymes: the reduction of acetamidoacrylate proceeds to produce N‐acetamidoalanine in either 96 % ee (R) or 80 % ee (S). In addition to providing a chiral second coordination sphere and, thus, selectivity to the catalyst, the phenomenon of protein‐accelerated catalysis (e.g., increased activity) was unraveled. Such artificial metalloenzymes based on the biotin–avidin technology display features that are reminiscent of both homogeneous and of enzymatic catalysis.
Notes: ---
-
Artificial Metalloenzymes for Enantioselective Catalysis: Recent Advances
Review -
ChemBioChem 2006, 7, 1845-1852, 10.1002/cbic.200600264
Creating new catalytic function in proteins. Anchoring an organometallic moiety within a protein affords artificial metalloenzymes for enantioselective catalysis. Both chemical and genetic tools can be applied in the optimization of such systems, which lie at the interface between homogeneous and enzymatic catalysis. This minireview presents the latest developments in the field of artificial metalloenzymes.
Notes: ---
-
Artificial Metalloenzymes for Enantioselective Catalysis: The Phenomenon of Protein Accelerated Catalysis
-
J. Organomet. Chem. 2004, 689, 4868-4871, 10.1016/j.jorganchem.2004.09.032
We report on the phenomenon of protein-accelerated catalysis in the field of artificial metalloenzymes based on the non-covalent incorporation of biotinylated rhodium–diphosphine complexes in (strept)avidin as host proteins. By incrementally varying the [Rh(COD)(Biot-1)]+ vs. (strept)avidin ratio, we show that the enantiomeric excess of the produced acetamidoalanine decreases slowly. This suggests that the catalyst inside (strept)avidin is more active than the catalyst outside the host protein. Both avidin and streptavidin display protein-accelerated catalysis as the protein embedded catalyst display 12.0- and 3.0-fold acceleration over the background reaction with a catalyst devoid of protein. Thus, these artificial metalloenzymes display an increase both in activity and in selectivity for the reduction of acetamidoacrylic acid.
Metal: RhHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: Reduction of acetamidoacrylic acid. 3.0-fold protein acceleration.
Notes: Reduction of acetamidoacrylic acid. 12.0-fold protein acceleration.
-
Artificial Metalloenzymes for Olefin Metathesis Based on the Biotin-(Strept)Avidin Technology
-
Chem. Commun. 2011, 47, 12065, 10.1039/c1cc15004a
Incorporation of a biotinylated Hoveyda-Grubbs catalyst within (strept)avidin affords artificial metalloenzymes for the ring-closing metathesis of N-tosyl diallylamine in aqueous solution. Optimization of the performance can be achieved either by chemical or genetic means.
Metal: RuLigand type: CarbeneHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: RCM
Metal: RuLigand type: CarbeneHost protein: Avidin (Av)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: RCM
-
Artificial Metalloenzymes for the Diastereoselective Reduction of NAD+ to NAD2H
-
Org. Biomol. Chem. 2015, 13, 357-360, 10.1039/c4ob02071e
Stereoselectively labelled isotopomers of NAD(P)H are highly relevant for mechanistic studies of enzymes which utilize them as redox equivalents.
Notes: ---
-
Artificial Metalloenzymes: Proteins as Hosts for Enantioselective Catalysis
Review -
Chem. Soc. Rev. 2005, 34, 337, 10.1039/b314695m
Enantioselective catalysis is one of the most efficient ways to synthesize high-added-value enantiomerically pure organic compounds. As the subtle details which govern enantioselection cannot be reliably predicted or computed, catalysis relies more and more on a combinatorial approach. Biocatalysis offers an attractive, and often complementary, alternative for the synthesis of enantiopure products. From a combinatorial perspective, the potential of directed evolution techniques in optimizing an enzyme's selectivity is unrivaled. In this review, attention is focused on the construction of artificial metalloenzymes for enantioselective catalytic applications. Such systems are shown to combine properties of both homogeneous and enzymatic kingdoms. This review also includes our recent research results and implications in the development of new semisynthetic metalloproteins for the enantioselective hydrogenation of N-protected dehydro-amino acids.
Notes: ---
-
Artificial Metalloenzymes: Reaction Scope and Optimization Strategies
Review -
Chem. Rev. 2018, 118, 142-231, 10.1021/acs.chemrev.7b00014
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970’s. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000’s. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000’s, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Notes: ---