Filters
Export Export the current list as a CSV file
Abstracts Show/hide abstracts

10 publications

Sort by Titlearrow_drop_down Datearrow_drop_down Journalarrow_drop_down

Host protein

6-Phospho-gluconolactonase (6-PGLac) A2A adenosine receptor Adipocyte lipid binding protein (ALBP) Antibody Antibody 03-1 Antibody 12E11G Antibody 13G10 Antibody 13G10 / 14H7 Antibody 14H7 Antibody 1G8 Antibody 28F11 Antibody 38C2 Antibody 3A3 Antibody 7A3 Antibody7G12-A10-G1-A12 Antibody L-chain from Mab13-1 hybridoma cells Antibody SN37.4 Apo-[Fe]-hydrogenase from M. jannaschii Apo-ferritin Apo-HydA1 ([FeFe]-hydrogenase) from C. reinhardtii Apo-HydA enzymes from C. reinhardtii, M. elsdenii, C. pasteurianum Artificial construct Avidin (Av) Azurin Binding domain of Rabenosyn (Rab4) Bovine carbonic anhydrase (CA) Bovine carbonic anhydrase II (CA) Bovine serum albumin (BSA) Bovine β-lactoglobulin (βLG) Bromelain Burkavidin C45 (c-type cytochrome maquette) Carbonic anhydrase (CA) Carboxypeptidase A Catabolite activator protein (CAP) CeuE C-terminal domain of calmodulin Cutinase Cytochrome b562 Cytochrome BM3h Cytochrome c Cytochrome c552 Cytochrome cb562 Cytochrome c peroxidase Cytochrome P450 (CYP119) Domain of Hin recombinase Due Ferro 1 E. coli catabolite gene activator protein (CAP) [FeFe]-hydrogenase from C. pasteurianum (CpI) Ferredoxin (Fd) Ferritin FhuA FhuA ΔCVFtev Flavodoxin (Fld) Glyoxalase II (Human) (gp27-gp5)3 gp45 [(gp5βf)3]2 Heme oxygenase (HO) Hemoglobin Horse heart cytochrome c Horseradish peroxidase (HRP) Human carbonic anhydrase Human carbonic anhydrase II (hCAII) Human retinoid-X-receptor (hRXRa) Human serum albumin (HSA) HydA1 ([FeFe]-hydrogenase) from C. reinhardtii IgG 84A3 Laccase Lipase B from C. antarctica (CALB) Lipase from G. thermocatenulatus (GTL) LmrR Lysozyme Lysozyme (crystal) Mimochrome Fe(III)-S6G(D)-MC6 (De novo designed peptide) Mouse adenosine deaminase Myoglobin (Mb) Neocarzinostatin (variant 3.24) NikA Nitrobindin (Nb) Nitrobindin variant NB4 Nuclease from S. aureus Papain (PAP) Photoactive Yellow Protein (PYP) Photosystem I (PSI) Phytase Prolyl oligopeptidase (POP) Prolyl oligopeptidase (POP) from P. furiosus Rabbit serum albumin (RSA) Ribonuclease S RNase A Rubredoxin (Rd) Silk fibroin fibre Small heat shock protein from M. jannaschii ß-lactoglobulin Staphylococcal nuclease Steroid Carrier Protein 2L (SCP 2L) Sterol Carrier Protein (SCP) Streptavidin (monmeric) Streptavidin (Sav) Thermolysin Thermosome (THS) tHisF TM1459 cupin TRI peptide Trypsin Tryptophan gene repressor (trp) Xylanase A (XynA) Zn8:AB54 Zn8:AB54 (mutant C96T) α3D peptide α-chymotrypsin β-lactamase β-lactoglobulin (βLG)

Corresponding author

Akabori, S. Alberto, R. Albrecht, M. Anderson, J. L. R. Apfel, U.-P. Arnold, F. H. Artero, V. Bäckvall, J. E. Baker, D. Ball, Z. T. Banse, F. Berggren, G. Bian, H.-D. Birnbaum, E. R. Borovik, A. S. Bren, K. L. Bruns, N. Brustad, E. M. Cardona, F. Case, M. A. Cavazza, C. Chan, A. S. C. Coleman, J. E. Craik, C. S. Creus, M. Cuatrecasas, P. Darnall, D. W. DeGrado, W. F. Dervan, P. B. de Vries, J. Diéguez, M. Distefano, M. D. Don Tilley, T. Duhme-Klair, A. K. Ebright, R. H. Emerson, J. P. Eppinger, J. Fasan, R. Filice, M. Fontecave, M. Fontecilla-Camps, J. C. Fruk, L. Fujieda, N. Fussenegger, M. Gademann, K. Gaggero, N. Germanas, J. P. Ghattas, W. Ghirlanda, G. Golinelli-Pimpaneau, B. Goti, A. Gras, E. Gray, H. B. Green, A. P. Gross, Z. Gunasekeram, A. Happe, T. Harada, A. Hartwig, J. F. Hasegawa, J.-Y. Hayashi, T Hemschemeier, A. Herrick, R. S. Hilvert, D. Hirota, S. Huang, F.-P. Hureau, C. Hu, X. Hyster, T. K. Imanaka, T. Imperiali, B. Itoh, S. Janda, K. D. Jarvis, A. G. Jaussi, R. Jeschek, M. Kaiser, E. T. Kamer, P. C. J. Kazlauskas, R. J. Keinan, E. Khare, S. D. Kim, H. S. Kitagawa, S. Klein Gebbink, R. J. M. Kokubo, T. Korendovych, I. V. Kuhlman, B. Kurisu, G. Laan, W. Lee, S.-Y. Lehnert, N. Leow, T. C. Lerner, R. A. Lewis, J. C. Liang, H. Lindblad, P. Lin, Y.-W. Liu, J. Lombardi, A. Lubitz, W. Lu, Y. Maglio, O. Mahy, J.-P. Mangiatordi, G. F. Marchetti, M. Maréchal, J.-D. Marino, T. Marshall, N. M. Matile, S. Matsuo, T. McNaughton, B. R. Ménage, S. Messori, L. Mulfort, K. L. Nastri, F. Nicholas, K. M. Niemeyer, C. M. Nolte, R. J. M. Novič, M. Okamoto, Y. Okano, M. Okuda, J. Onoda, A. Oohora, K. Palomo, J. M. Pàmies, O. Panke, S. Pan, Y. Paradisi, F. Pecoraro, V. L. Pordea, A. Reetz, M. T. Reijerse, E. Renaud, J.-L. Ricoux, R. Rimoldi, I. Roelfes, G. Rovis, T. Sakurai, S. Salmain, M. Sasaki, T. Sauer, D. F. Schultz, P. G. Schwaneberg, U. Seelig, B. Shafaat, H. S. Shahgaldian, P. Sheldon, R. A. Shima, S. Sigman, D. S. Song, W. J. Soumillion, P. Strater, N. Sugiura, Y. Szostak, J. W. Tezcan, F. A. Thorimbert, S. Tiede, D. M. Tiller, J. C. Turner, N. J. Ueno, T. Utschig, L. M. van Koten, G. Wang, J. Ward, T. R. Watanabe, Y. Whitesides, G. M. Wilson, K. S. Woolfson, D. N. Yilmaz, F. Zhang, J.-L.

Journal

3 Biotech Acc. Chem. Res. ACS Catal. ACS Cent. Sci. ACS Sustainable Chem. Eng. Adv. Synth. Catal. Angew. Chem., Int. Ed. Appl. Biochem. Biotechnol. Appl. Organomet. Chem. Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications Beilstein J. Org. Chem. Biochemistry Biochim. Biophys. Acta, Bioenerg. Biochimie Bioconjug. Chem. Bioorg. Med. Chem. Bioorg. Med. Chem. Lett. Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging Biopolymers Biotechnol. Adv. Biotechnol. Bioeng. Can. J. Chem. Catal. Lett. Catal. Sci. Technol. Cat. Sci. Technol. ChemBioChem ChemCatChem Chem. Commun. Chem. Rev. Chem. Sci. Chem. Soc. Rev. Chem. - Eur. J. Chem. - Asian J. Chem. Lett. ChemistryOpen ChemPlusChem Chimia Commun. Chem. Comprehensive Inorganic Chemistry II Comprehensive Supramolecular Chemistry II C. R. Chim. Coordination Chemistry in Protein Cages: Principles, Design, and Applications Coord. Chem. Rev. Croat. Chem. Acta Curr. Opin. Biotechnol. Curr. Opin. Chem. Biol. Curr. Opin. Struct. Biol. Dalton Trans. Effects of Nanoconfinement on Catalysis Energy Environ. Sci. Eur. J. Biochem. Eur. J. Inorg. Chem. FEBS Lett. Helv. Chim. Acta Inorg. Chim. Acta Inorg. Chem. Int. J. Mol. Sci. Isr. J. Chem. J. Biol. Chem. J. Biol. Inorg. Chem. J. Immunol. Methods J. Inorg. Biochem. J. Mol. Catal. A: Chem. J. Mol. Catal. B: Enzym. J. Organomet. Chem. J. Phys. Chem. Lett. J. Porphyr. Phthalocyanines J. Protein Chem. J. Am. Chem. Soc. J. Chem. Soc. J. Chem. Soc., Chem. Commun. Methods Enzymol. Mol. Divers. Molecular Encapsulation: Organic Reactions in Constrained Systems Nature Nat. Catal. Nat. Chem. Biol. Nat. Chem. Nat. Commun. Nat. Protoc. Nat. Rev. Chem. New J. Chem. Org. Biomol. Chem. Plos ONE Proc. Natl. Acad. Sci. U. S. A. Process Biochem. Prog. Inorg. Chem. Prot. Eng. Protein Engineering Handbook Protein Expression Purif. Pure Appl. Chem. RSC Adv. Science Small Synlett Tetrahedron Tetrahedron: Asymmetry Tetrahedron Lett. Chem. Rec. Top. Catal. Top. Organomet. Chem. Trends Biotechnol.

A General Method for Artificial Metalloenzyme Formationthrough Strain-Promoted Azide–Alkyne Cycloaddition

Strain‐promoted azide–alkyne cycloaddition (SPAAC) can be used to generate artificial metalloenzymes (ArMs) from scaffold proteins containing a p‐azido‐L‐phenylalanine (Az) residue and catalytically active bicyclononyne‐substituted metal complexes. The high efficiency of this reaction allows rapid ArM formation when using Az residues within the scaffold protein in the presence of cysteine residues or various reactive components of cellular lysate. In general, cofactor‐based ArM formation allows the use of any desired metal complex to build unique inorganic protein materials. SPAAC covalent linkage further decouples the native function of the scaffold from the installation process because it is not affected by native amino acid residues; as long as an Az residue can be incorporated, an ArM can be generated. We have demonstrated the scope of this method with respect to both the scaffold and cofactor components and established that the dirhodium ArMs generated can catalyze the decomposition of diazo compounds and both SiH and olefin insertion reactions involving these carbene precursors.

Metal:

Rh

Ligand type:

Poly-carboxylic acid

Host protein:

tHisF

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Cyclopropanation

Max TON:

81

ee:

---

PDB:

1THF

Notes:

---

Metal:

Rh

Ligand type:

Poly-carboxylic acid

Host protein:

tHisF

Anchoring strategy:

Covalent

Optimization:

---

Reaction:

Si-H Insertion

Max TON:

7

ee:

---

PDB:

1THF

Notes:

---

An Artificial Heme Enzyme for Cyclopropanation Reactions

Metal:

Fe

Ligand type:

Protoporphyrin IX

Host protein:

LmrR

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

449

ee:

51

PDB:

6FUU

Notes:

---

An Artificial Metalloenzyme for Carbene Transfer Based on a Biotinylated Dirhodium Anchored Within Streptavidin

Metal:

Rh

Ligand type:

Carboxylate

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

~60

ee:

---

PDB:

---

Notes:

Cyclopropanation reaction was also performed in the E. coli periplasm.

Metal:

Rh

Ligand type:

Carboxylate

Host protein:

Streptavidin (Sav)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

C-H insertion

Max TON:

~60

ee:

---

PDB:

---

Notes:

---

Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome P450 (CYP119)

Anchoring strategy:

Metal substitution

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

10181

ee:

98

PDB:

---

Notes:

Selectivity for cis product (cis/trans = 90:1)

Capture and Characterization of a Reactive Haem– Carbenoid Complex in an Artificial Metalloenzyme

Metal:

Fe

Host protein:

Myoglobin (Mb)

Anchoring strategy:

---

Optimization:

Genetic

Reaction:

Cyclopropanation

Max TON:

1000

ee:

99

PDB:

6F17

Notes:

Structure of the Mb*(NMH) haem-iron complex

Metal:

Fe

Host protein:

Myoglobin (Mb)

Anchoring strategy:

---

Optimization:

Genetic

Reaction:

Cyclopropanation

Max TON:

1000

ee:

99

PDB:

6F17

Notes:

Structure of the Mb*(NMH) haem-iron–carbenoid complex

Catalytic Cyclopropanation by Myoglobin Reconstituted with Iron Porphycene: Acceleration of Catalysis due to Rapid Formation of the Carbene Species

Metal:

Fe

Ligand type:

Amino acid; Porphycene

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Reconstitution

Optimization:

---

Reaction:

Cyclopropanation

Max TON:

---

ee:

---

PDB:

---

Notes:

Cyclopropanation of styrene with ethyl diazoacetate: kcat/KM = 1.3 mM-1 * s-1, trans/cis = 99:1

Engineering a Dirhodium Artificial Metalloenzyme for Selective Olefin Cyclopropanation

Metal:

Rh

Ligand type:

Poly-carboxylic acid

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

74

ee:

92

PDB:

---

Notes:

---

Enzyme stabilization via computationally guided protein stapling

Metal:

Fe

Ligand type:

Porphyrin

Host protein:

Myoglobin (Mb)

Anchoring strategy:

Supramolecular

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

4740

ee:

99.2

PDB:

---

Notes:

Stapling of protein via thioether bond formation between the noncanonical amino acid O-2-bromoethyl tyrosine and cysteine

Evolving Artificial Metalloenzymes via Random Mutagenesis

Metal:

Rh

Ligand type:

OAc

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

66

ee:

94

PDB:

5T88

Notes:

Mutagenesis of the ArM by error-prone PCR

Metal:

Rh

Ligand type:

OAc

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

N-H Insertion

Max TON:

73

ee:

40

PDB:

5T88

Notes:

Mutagenesis of the ArM by error-prone PCR

Metal:

Rh

Ligand type:

OAc

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

S-H Insertion

Max TON:

64

ee:

32

PDB:

5T88

Notes:

Mutagenesis of the ArM by error-prone PCR

Metal:

Rh

Ligand type:

OAc

Anchoring strategy:

Covalent

Optimization:

Chemical & genetic

Reaction:

Si-H Insertion

Max TON:

35

ee:

64

PDB:

5T88

Notes:

Mutagenesis of the ArM by error-prone PCR

Orthogonal Expression of an Artificial Metalloenzyme for Abiotic Catalysis

Metal:

Ir

Ligand type:

Methyl; Porphyrin

Host protein:

Cytochrome BM3h

Anchoring strategy:

Reconstitution

Optimization:

Chemical & genetic

Reaction:

Cyclopropanation

Max TON:

339

ee:

97

PDB:

---

Notes:

Reaction of styrene with ethyl diazoacetate, cis:trans = 29:71