495 publications
-
Meso-Unsubstituted Iron Corrole in Hemoproteins: Remarkable Differences in Effects on Peroxidase Activities between Myoglobin and Horseradish Peroxidase
-
J. Am. Chem. Soc. 2009, 131, 15124-15125, 10.1021/ja907428e
Myoglobin (Mb) and horseradish peroxidase (HRP) were both reconstituted with a meso-unsubstituted iron corrole and their electronic configurations and peroxidase activities were investigated. The appearance of the 540 nm band upon incorporation of the iron corrole into apoMb indicates axial coordination by the proximal histidine imidazole in the Mb heme pocket. Based on 1H NMR measurements using the Evans method, the total magnetic susceptibility of the iron corrole reconstituted Mb was evaluated to be S = 3/2. In contrast, although a band does not appear in the vicinity of 540 nm during reconstitution of the iron corrole into the matrix of HRP, a spectrum similar to that of the iron corrole reconstituted Mb is observed upon the addition of dithionite. This observation suggests that the oxidation state of the corrole iron in the reconstituted HRP can be assigned as +4. The catalytic activities of both proteins toward guaiacol oxidation are quite different; the iron corrole reconstituted HRP decelerates H2O2-dependent oxidation of guaiacol, while the same reaction catalyzed by iron corrole reconstituted Mb has the opposite effect and accelerates the reaction. This finding can be attributed to the difference in the oxidation states of the corrole iron when these proteins are in the resting state.
Metal: FeLigand type: CorroleHost protein: Myoglobin (Mb)Anchoring strategy: ReconstitutionOptimization: ---Notes: ---
Metal: FeLigand type: CorroleHost protein: Horseradish peroxidase (HRP)Anchoring strategy: ReconstitutionOptimization: ---Notes: ---
-
Metal-Assembled Modular Proteins: Toward Functional Protein Design
Review -
Acc. Chem. Res. 2004, 10.1021/ar960245+
Metal-assembled parallel helix-bundle proteins have been used to investigate electron transfer through α-helical structures. Fermi Golden Rule distance dependence of electron transfer rates was established in a family of designed metalloproteins, and the contribution of intrahelical hydrogen bonding to the matrix tunneling element was explored. The first steps toward the design of functional proteins using dynamic combinatorial assembly of α-helical structural elements are described.
Notes: ---
-
Metal-Binding Promiscuity in Artificial Metalloenzyme Design
Review -
Curr. Opin. Chem. Biol. 2015, 25, 124-132, 10.1016/j.cbpa.2014.12.035
This review presents recent examples of metal-binding promiscuity in protein scaffolds and highlights the effect of metal variation on catalytic functionality. Naturally evolved binding sites, as well as unnatural amino acids and cofactors can bind a diverse range of metals, including non-biological transition elements. Computational screening and rational design have been successfully used to create promiscuous binding-sites. Incorporation of non-native metals into proteins expands the catalytic range of transformations catalysed by enzymes and enhances their potential for application in chemicals synthesis.
Notes: ---
-
Metal-Catalyzed Organic Transformations Inside a Protein Scaffold Using Artificial Metalloenzymes
Review -
Coordination Chemistry in Protein Cages: Principles, Design, and Applications 2013, 203-219, 10.1002/9781118571811.ch8
Enzymes catalyze a wide variety of chemical reactions with high selectivity and activity under mild conditions. The research strategy in the construction of artificial metalloenzyme relies on noncovalent attachment of the metal moiety using biotin‐(strept)avidin technology. The construction of artificial metalloenzyme can be carried out by anchoring a metal moiety within a protein scaffold with the help of an anchoring group. This chapter presents the results obtained upon applying this strategy toward the generation of artificial metalloenzymes for various enantioselective transformations. The palladium‐catalyzed asymmetric allylic alkylation (AAA) is a powerful tool for the elaboration of enantiopure high‐added value compounds. The current hypothesis is that proteins with a given catalytic function are difficult to use as host for the creation of artificial metalloenzymes. Proteins which merely act as transporters (myoglobin, serum albumins, (strept)avidin, etc.) may be more suited for the creation of artificial metalloenzymes.
Notes: Book chapter
-
Metal-Conjugated Affinity Labels: A New Concept to Create Enantioselective Artificial Metalloenzymes
-
ChemistryOpen 2013, 2, 50-54, 10.1002/open.201200044
How to train a protein: Metal‐conjugated affinity labels were used to selectively position catalytically active metal centers in the binding pocket of proteases. The resulting artificial metalloenzymes achieve up to 82 % e.r. in the hydrogenation of ketones. The modular setup enables a rapid generation of artificial metalloenzyme libraries, which can be adapted to a broad range of catalytic conditions.
Notes: ---
-
Metal-Directed Design of Supramolecular Protein Assemblies
Review -
Methods Enzymol. 2016, 10.1016/bs.mie.2016.05.009
Owing to their central roles in cellular signaling, construction, and biochemistry, protein–protein interactions (PPIs) and protein self-assembly have become a major focus of molecular design and synthetic biology. In order to circumvent the complexity of constructing extensive noncovalent interfaces, which are typically involved in natural PPIs and protein self-assembly, we have developed two design strategies, metal-directed protein self-assembly (MDPSA) and metal-templated interface redesign (MeTIR). These strategies, inspired by both the proposed evolutionary roles of metals and their prevalence in natural PPIs, take advantage of the favorable properties of metal coordination (bonding strength, directionality, and reversibility) to guide protein self-assembly with minimal design and engineering. Using a small, monomeric protein (cytochrome cb562) as a model building block, we employed MDPSA and MeTIR to create a diverse array of functional supramolecular architectures which range from structurally tunable oligomers to metalloprotein complexes that can properly self-assemble in living cells into novel metalloenzymes. The design principles and strategies outlined herein should be readily applicable to other protein systems with the goal of creating new PPIs and protein assemblies with structures and functions not yet produced by natural evolution.
Notes: ---
-
Metal Incorporated Horseradish Peroxidase (HRP) Catalyzed Oxidation of Resveratrol: Selective Dimerization or Decomposition
-
RSC Adv. 2013, 3, 22976, 10.1039/c3ra43784a
Horseradish Peroxidase (HRP) is a commercially available and prevalently used peroxidase with no specific substrate binding domain. However, after being incorporated with different metal cations, new catalytic functions were found in biomimetic oxidation of resveratrol. Based on the results of screening, Ca, Cu, Fe and Mn incorporated enzymes showed distinctive effects, either decomposition or dimerization products were observed.
-
Metal Ion Dependent Binding of Sulphonamide to Carbonic Anhydrase
-
Nature 1967, 214, 193-194, 10.1038/214193a0
ACETAZOLAMIDE (2-acetylamino-1,3,4-thiadiazole-5-sulphonamide, ‘Diamox’) is the most potent known inhibitor of the zinc enzyme carbonic anhydrase. This communication reports the direct demonstration that binding of acetazolamide to human carbonic anhydrase requires the presence of a metal ion at the active site and that binding depends on the species of divalent metal ion present. Zinc (II) and cobalt (II) ions are the only ions which induce the formation of very stable acetazolamide carbonic anhydrase complexes and are also the ions which most effectively catalyse the hydration of carbon dioxide and the hydrolysis of p-nitrophenyl acetate. Metal-binding monodentate ions, CN−, HS−, OCN−, and N3−, known as effective carbonic anhydrase inhibitors, compete for the acetazolamide binding site of the zinc enzyme.
Metal: CoLigand type: Amino acidHost protein: Human carbonic anhydraseAnchoring strategy: Metal substitutionOptimization: ---Notes: CO2 hydration
Metal: CoLigand type: Amino acidHost protein: Human carbonic anhydraseAnchoring strategy: Metal substitutionOptimization: ---Notes: Ester cleavage
-
Metalloenzyme Design and Engineering through Strategic Modifications of Native Protein Scaffolds
Review -
Curr. Opin. Chem. Biol. 2014, 19, 67-75, 10.1016/j.cbpa.2014.01.006
Metalloenzymes are among the major targets of protein design and engineering efforts aimed at attaining novel and efficient catalysis for biochemical transformation and biomedical applications, due to the diversity of functions imparted by the metallo-cofactors along with the versatility of the protein environment. Naturally evolved protein scaffolds can often serve as robust foundations for sustaining artificial active sites constructed by rational design, directed evolution, or a combination of the two strategies. Accumulated knowledge of structure–function relationship and advancement of tools such as computational algorithms and unnatural amino acids incorporation all contribute to the design of better metalloenzymes with catalytic properties approaching the needs of practical applications.
Notes: ---
-
Metallopeptide Catalysts and Artificial Metalloenzymes Containing Unnatural Amino Acids
Review -
Curr. Opin. Chem. Biol. 2015, 25, 27-35, 10.1016/j.cbpa.2014.12.016
Metallopeptide catalysts and artificial metalloenzymes built from peptide scaffolds and catalytically active metal centers possess a number of exciting properties that could be exploited for selective catalysis. Control over metal catalyst secondary coordination spheres, compatibility with library based methods for optimization and evolution, and biocompatibility stand out in this regard. A wide range of unnatural amino acids (UAAs) have been incorporated into peptide and protein scaffolds using several distinct methods, and the resulting UAAs containing scaffolds can be used to create novel hybrid metal–peptide catalysts. Promising levels of selectivity have been demonstrated for several hybrid catalysts, and these provide a strong impetus and important lessons for the design of and optimization of hybrid catalysts.
Notes: ---
-
Metalloprotein Design
Review -
Comprehensive Inorganic Chemistry II 2013, 565-593, 10.1016/B978-0-08-097774-4.00325-9
Metalloproteins catalyze numerous biological reactions ranging from photosynthesis, respiration, nitrogen fixation to signal transduction and complex chemical reactions. It is thus not surprising that metalloproteins account for almost one-half of the total number of proteins in nature. A considerable effort has been directed toward understanding the structure–function relationships using native proteins. However, it is an ultimate challenge to design metalloproteins using only the minimal features required to reproduce their functionalities as well as confer them with novel and unprecedented functionalities learned from the design process. In this chapter, we review some recent successes in the field of metalloprotein design using either de novo designed or native protein scaffolds. Furthermore, metalloprotein design employing unnatural amino acids or non-native cofactor are summarized. Finally, methodologies employing rational design, combinatorial selection, or both methods are also discussed.
Notes: Book chapter
-
Metal-Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold
Review -
Angew. Chem. Int. Ed. 2019, 58, 6176-6199, 10.1002/anie.201807536
Selective modification of natural proteins is a daunting methodological challenge and a stringent test of selectivity and reaction scope. There is a continued need for new reactivity and new selectivity concepts. Transition metals exhibit a wealth of unique reactivity that is orthogonal to biological reactions and processes. As such, metal?based methods play an increasingly important role in bioconjugation. This Review examines metal?based methods as well as their reactivity and selectivity for the functionalization of natural proteins and peptides.
Notes: ---
-
Metal-Mediated Protein Assembly Using a Genetically Incorporated Metal-Chelating Amino Acid
-
Biomacromolecules 2020, 21, 5021-5028, 10.1021/acs.biomac.0c01194
Many natural proteins function in oligomeric forms, which are critical for their sophisticated functions. The construction of protein assemblies has great potential for biosensors, enzyme catalysis, and biomedical applications. In designing protein assemblies, a critical process is to create protein–protein interaction (PPI) networks at defined sites of a target protein. Although a few methods are available for this purpose, most of them are dependent on existing PPIs of natural proteins to some extent. In this report, a metal-chelating amino acid, 2,2′-bipyridylalanine (BPA), was genetically introduced into defined sites of a monomeric protein and used to form protein oligomers. Depending on the number of BPAs introduced into the protein and the species of metal ions (Ni2+ and Cu2+), dimers or oligomers with different oligomerization patterns were formed by complexation with a metal ion. Oligomer sizes could also be controlled by incorporating two BPAs at different locations with varied angles to the center of the protein. When three BPAs were introduced, the monomeric protein formed a large complex with Ni2+. In addition, when Cu2+ was used for complex formation with the protein containing two BPAs, a linear complex was formed. The method proposed in this report is technically simple and generally applicable to various proteins with interesting functions. Therefore, this method would be useful for the design and construction of functional protein assemblies.
Ligand type: BipyridineHost protein: Maltose-binding protein (MBP)Anchoring strategy: DativeOptimization: ---Reaction: ---Max TON: ---ee: ---PDB: ---Notes: ---
-
Metal Substitution in Thermolysin: Catalytic Properties of Tungstate Thermolysin in Sulfoxidation with H2O2
-
Can. J. Chem. 2002, 80, 622-625, 10.1139/v02-082
The catalytic Zn2+ ion was extracted from thermolysin, which had been covalently bound to Eupergit C. The apo-enzyme incorporated the oxometallate anions MoO42, SeO42, and WO42 with partial restoration of the proteolytic activity. Tungstate thermolysin was moderately active in the sulfoxidation of thioanisole by hydrogen peroxide, whereas its activity towards phenylmercaptoacetophenone, which was designed to bind well in the active site of thermolysin, was much higher.
Metal: WLigand type: Amino acidHost protein: ThermolysinAnchoring strategy: Metal substitutionOptimization: ChemicalNotes: ---
-
Metatheases: Artificial Metalloproteins for Olefin Metathesis
Review -
Org. Biomol. Chem. 2016, 14, 9174-9183, 10.1039/C6OB01475E
The incorporation of organometallic catalyst precursors in proteins results in so-called artificial metalloenzymes. The protein structure will control activity, selectivity and stability of the organometallic site in aqueous medium and allow non-natural reactions in biological settings. Grubbs-Hoveyda type ruthenium catalysts with an N-heterocyclic carbene (NHC) as ancillary ligand, known to be active in olefin metathesis, have recently been incorporated in various proteins. An overview of these artificial metalloproteins and their potential application in olefin metathesis is given.
Notes: ---
-
Methane Generation and Reductive Debromination of Benzylic Position by Reconstituted Myoglobin Containing Nickel Tetradehydrocorrin as a Model of Methyl-coenzyme M Reductase
-
Inorg. Chem. 2020, 59, 11995-12004, 10.1021/acs.inorgchem.0c00901
Methyl-coenzyme M reductase (MCR), which contains the nickel hydrocorphinoid cofactor F430, is responsible for biological methane generation under anaerobic conditions via a reaction mechanism which has not been completely elucidated. In this work, myoglobin reconstituted with an artificial cofactor, nickel(I) tetradehydrocorrin (NiI(TDHC)), is used as a protein-based functional model for MCR. The reconstituted protein, rMb(NiI(TDHC)), is found to react with methyl donors such as methyl p-toluenesulfonate and trimethylsulfonium iodide with methane evolution observed in aqueous media containing dithionite. Moreover, rMb(NiI(TDHC)) is found to convert benzyl bromide derivatives to reductively debrominated products without homocoupling products. The reactivity increases in the order of primary > secondary > tertiary benzylic carbons, indicating steric effects on the reaction of the nickel center with the benzylic carbon in the initial step. In addition, Hammett plots using a series of para-substituted benzyl bromides exhibit enhancement of the reactivity with introduction of electron-withdrawing substituents, as shown by the positive slope against polar substituent constants. These results suggest a nucleophilic SN2-type reaction of the Ni(I) species with the benzylic carbon to provide an organonickel species as an intermediate. The reaction in D2O buffer at pD 7.0 causes a complete isotope shift of the product by +1 mass unit, supporting our proposal that protonation of the organonickel intermediate occurs during product formation. Although the turnover numbers are limited due to inactivation of the cofactor by side reactions, the present findings will contribute to elucidating the reaction mechanism of MCR-catalyzed methane generation from activated methyl sources and dehalogenation.
Metal: NiLigand type: TetradehydrocorrinHost protein: Myoglobin (Mb)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
Metal: CoLigand type: TetradehydrocorrinHost protein: Myoglobin (Mb)Anchoring strategy: SupramolecularOptimization: ChemicalNotes: ---
-
Mimicking Hydrogenases: From Biomimetics to Artificial Enzymes
Review -
Coord. Chem. Rev. 2014, 270-271, 127-150, 10.1016/j.ccr.2013.12.018
Over the last 15 years, a plethora of research has provided major insights into the structure and function of hydrogenase enzymes. This has led to the important development of chemical models that mimic the inorganic enzymatic co-factors, which in turn has further contributed to the understanding of the specific molecular features of these natural systems that facilitate such large and robust enzyme activities. More recently, efforts have been made to generate guest–host models and artificial hydrogenases, through the incorporation of transition metal-catalysts (guests) into various hosts. This adds a new layer of complexity to hydrogenase-like catalytic systems that allows for better tuning of their activity through manipulation of both the first (the guest) and the second (the host) coordination spheres. Herein we review the aforementioned advances achieved during the last 15 years, in the field of inorganic biomimetic hydrogenase chemistry. After a brief presentation of the enzymes themselves, as well as the early bioinspired catalysts, we review the more recent systems constructed as models for the hydrogenase enzymes, with a specific focus on the various strategies employed for incorporating of synthetic models into supramolecular frameworks and polypeptidic/protein scaffolds, and critically discuss the advantages of such an elaborate approach, with regard to the catalytic performances.
Notes: ---
-
Minimalist de Novo Design of Protein Catalysts
Review -
ACS Catal. 2019, 9, 9265-9275, 10.1021/acscatal.9b02509
The field of protein design has grown enormously in the past few decades. In this review, we discuss the minimalist approach to the design of artificial enzymes, in which protein sequences are created with the minimum number of elements for folding and function. This method relies on identifying starting points in catalytically inert scaffolds for active site installation. The progress of the field from the original helical assemblies of the 1980s to the more complex structures of the present day is discussed, highlighting the variety of catalytic reactions which have been achieved using these methods. We outline the strengths and weaknesses of the minimalist approaches, describe representative design cases, and put it in the general context of the de novo design of proteins.
Notes: ---
-
Modular Design of G-Quadruplex MetalloDNAzymes for Catalytic C–C Bond Formations with Switchable Enantioselectivity
-
J. Am. Chem. Soc. 2021, 143, 3555-3561, 10.1021/jacs.0c13251
Metal-binding DNA structures with catalytic function are receiving increasing interest. Although a number of metalloDNAzymes have been reported to be highly efficient, the exact coordination/position of their catalytic metal center is often unknown. Here, we present a new approach to rationally develop metalloDNAzymes for Lewis acid-catalyzed reactions such as enantioselective Michael additions. Our strategy relies on the predictable folding patterns of unimolecular DNA G-quadruplexes, combined with the concept of metal-mediated base-pairing. Transition-metal coordination environments were created in G-quadruplex loop regions, accessible by substrates. Therefore, protein-inspired imidazole ligandoside L was covalently incorporated into a series of G-rich DNA strands by solid-phase synthesis. Iterative rounds of DNA sequence design and catalytic assays allowed us to select tailored metalloDNAzymes giving high conversions and excellent enantioselectivities (≥99%). Based on their primary sequence, folding pattern, and metal coordination mode, valuable information on structure–activity relationships could be extracted. Variation of the number and position of ligand L within the sequence allowed us to control the formation of (S) and (R) enantiomeric reaction products, respectively.
Metal: CuLigand type: DNA (G quadruplex)Host protein: metalloDNAzymeAnchoring strategy: Imidazole ligandosideOptimization: GeneticNotes: Km 35.2 uM, vmax-8.2 nM min-1
-
Modular Homogeneous Chromophore-Catalyst Assemblies
Review -
Acc. Chem. Res. 2016, 49, 835-843, 10.1021/acs.accounts.5b00539
Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate that molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule–nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)3]2+ (bpy = 2,2′-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis.
Notes: ---
-
Molecular Design and Regulation of Metalloenzyme Activities through Two Novel Approaches: Ferritin and P450s
Review -
BCSJ 2020, 93, 379-392, 10.1246/bcsj.20190305
We have developed two novel approaches for the construction of artificial metalloenzymes showing either unique catalytic activities or substrate specificity. The first example is the use of a hollow cage of apo-ferritin as a reaction vessel for hydrogenation of olefins, Suzuki-Miyaura C-C coupling and phenylacetylene polymerization by employing Pd0 nano-clusters, Pd2+(η3-C3H5) complexes and Rh1+(nbd) (nbd = norbornadiene) complexes introduced in the hollow cage, respectively. The second approach is the use of “decoy molecules” to change substrate specificity of P450s, allowing epoxidation and hydroxylation activities toward nonnative organic substrates in P450SPα, P450BSβ and P450BM3 without the mutation of any amino acid. Finally, the decoy strategy has been applied to an in vivo system of P450, i.e., the use of P450BM3 expressed in the whole cell of E. coli to oxidize benzene to phenol.
Notes: ---
-
Molecular Design of Heteroprotein Assemblies Providing a Bionanocup as a Chemical Reactor
-
Small 2008, 4, 50-54, 10.1002/smll.200700855
A bionanocup chemical reactor is constructed from a heteroprotein assembly from bacteriophage T4. The preparation of a stable iron(III) porphyrin–bionanocup composite is described. The hydrophobic cup provides a space suitable for the fixation of low‐water‐solubility iron(III) porphyrins. The application of the iron(III) porphyrin–bionanocup composites for the catalysis of sulfoxidation of thioanisoles is demonstrated (see figure).
Metal: FeLigand type: Maleimide-protoporphyrin IXHost protein: (gp27-gp5)3Anchoring strategy: Cystein-maleimideOptimization: ---Notes: ---
-
Molecular Modeling for Artificial Metalloenzyme Design and Optimization
Review -
Acc. Chem. Res. 2020, 53, 896-905, 10.1021/acs.accounts.0c00031
Artificial metalloenzymes (ArMs) are obtained by inserting homogeneous catalysts into biological scaffolds and are among the most promising strategies in the quest for new-to-nature biocatalysts. The quality of their design strongly depends on how three partners interact: the biological host, the “artificial cofactor,” and the substrate. However, structural characterization of functional artificial metalloenzymes by X-ray or NMR is often partial, elusive, or absent. How the cofactor binds to the protein, how the receptor reorganizes upon the binding of the cofactor and the substrate, and which are the binding mode(s) of the substrate for the reaction to proceed are key questions that are frequently unresolved yet crucial for ArM design. Such questions may eventually be solved by molecular modeling but require a step change beyond the current state-of-the-art methodologies. Here, we summarize our efforts in the study of ArMs, presenting both the development of computational strategies and their application. We first focus on our integrative computational framework that incorporates a variety of methods such as protein–ligand docking, classical molecular dynamics (MD), and pure quantum mechanical (QM) methods, which, when properly combined, are able to depict questions that range from host–cofactor binding predictions to simulations of entire catalytic mechanisms. We also pay particular attention to the protein–ligand docking strategies that we have developed to accurately predict the binding of transition metal-containing molecules to proteins. While this aspect is fundamental to many bioinorganic fields beyond ArMs, it has been disregarded from the molecular modeling landscape until very recently. Next we describe how to apply this computational framework to particular ArMs including systems previously characterized experimentally as well as others where computation served to guide the design. We start with the prediction of the interactions between homogeneous catalysts and biological hosts. Protein–ligand docking is pivotal at that stage, but it needs to be combined with QM/MM or MD approaches when the binding of the cofactor implies significant conformational changes of the protein or involve changes of the electronic state of the metal. Then, we summarize molecular modeling studies aimed at identifying cofactor–substrate arrangements inside the ArM active pocket that are consistent with its reactivity. These calculations stand on “Theozyme”-like dockings, MD-refined or not, which provide molecular rationale of the catalytic profiles of the artificial systems. In the third section, we present case studies to decode the entire catalytic mechanism of two ArMs: (1) an iridium based asymmetric transfer hydrogenase obtained by insertion of Noyori’s catalyst into streptavidin and (2) a metallohydrolase achieved by including a receptor. Transition states, second coordination sphere effects, as well as motions of the cofactors are identified as drivers of the enantiomeric profiles. Finally, we report computer-aided designs of ArMs to guide experiments toward chemical and mutational changes that improve their activity and/or enantioselective profiles and expand toward future directions.
Notes: ---
-
Molecular Recognition in Protein Modification with Rhodium Metallopeptides
Review -
Curr. Opin. Chem. Biol. 2015, 25, 98-102, 10.1016/j.cbpa.2014.12.017
Chemical manipulation of natural, unengineered proteins is a daunting challenge which tests the limits of reaction design. By combining transition-metal or other catalysts with molecular recognition ideas, it is possible to achieve site-selective protein reactivity without the need for engineered recognition sequences or reactive sites. Some recent examples in this area have used ruthenium photocatalysis, pyridine organocatalysis, and rhodium(II) metallocarbene catalysis, indicating that the fundamental ideas provide opportunities for using diverse reactivity on complex protein substrates and in complex cell-like environments.
Notes: ---
-
Molecular Understanding of Heteronuclear Active Sites in Heme–Copper Oxidases, Nitric Oxide Reductases, and Sulfite Reductases Through Biomimetic Modelling
Review -
Chem. Soc. Rev. 2021, 50, 2486-2539, 10.1039/d0cs01297a
Heme–copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32−, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme–[4Fe–4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Notes: ---
-
Multifunctional Nanoenzymes from Carbonic Anhydrase Skeleton
-
Process Biochem. 2018, 72, 71-78, 10.1016/j.procbio.2018.06.005
Carbonic anhydrase (carbonic dehydratase) (CA) is a metalloenzyme that contains zinc (Zn2+) ion in its active site. CA catalyzes the reversible conversion of carbon dioxide and water to bicarbonate and protons. Zn2+ ions, which are present in the active site of the enzyme, interact with the substrate molecules directly and cause catalytic effect. In this study, a nano-enzyme system was designed in aqueous solutions at room temperature and under nitrogen atmosphere to use the CA enzyme without any pre-treatment and deformation in its structure. The novel concept ANADOLUCA (AmiNo Acid (monomer) Decorated and Light Underpinning Conjugation Approach) was used for this process, nano CA enzyme of size 93 nm was synthesized. The activity of the synthesized nano CA was measured following the change in absorbance during the conversion of 4-nitrophenylacetate (NPA) to 4-nitrophenylate ion at 348 nm for a period of 10 min at 25 °C compared with free CA enzyme. Km and Vmax values for nano CA enzyme were found to be 0.442 mM and 1.6 × 10−3 mM min-1, respectively, whereas Km and Vmax values for free CA were found to be 0.471 mM and 1.5 × 10−3 mM min-1, respectively. In addition to these, the Zn2+ ion present in the active site of the nano CA enzyme was replaced by rodium metal. This nanorodium-substituted CA has been investigated as a new reductase enzyme for the stereoselective hydrogenation of olefins. Then, the Zn2+ ion in the active site of the nano CA enzyme was replaced with manganese metal to enhance the enzyme structure, thereby gaining characteristics of peroxidase. This newly synthesized nano manganese-substituted CA enzyme was investigated for its role as a peroxidase, which could be an alternative for hydrogen peroxidases.
Metal: ZnLigand type: Amino acidHost protein: Carbonic anhydrase (CA)Anchoring strategy: Metal substitutionOptimization: ChemicalNotes: Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Hydrolysis of 4-nitrophenyl acetate.
Metal: RhLigand type: Amino acidHost protein: Carbonic anhydrase (CA)Anchoring strategy: Metal substitutionOptimization: ChemicalNotes: Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Hydration of styrene.
Metal: MnLigand type: Amino acidHost protein: Carbonic anhydrase (CA)Anchoring strategy: Metal substitutionOptimization: ChemicalNotes: Cross-linked carbonic anhydrase nano-enzyme particles (93 nm in diameter). Oxidation of styrene.
-
Nature-Driven Photochemistry for Catalytic Solar Hydrogen Production: A Photosystem I-Transition Metal Catalyst Hybrid
-
J. Am. Chem. Soc. 2011, 133, 16334-16337, 10.1021/ja206012r
Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon fixation. Herein, we use one of Nature’s specialized energy-converters, the Photosystem I (PSI) protein, to drive hydrogen production from a synthetic molecular catalyst comprised of inexpensive, earth-abundant materials. PSI and a cobaloxime catalyst self-assemble, and the resultant complex rapidly produces hydrogen in aqueous solution upon exposure to visible light. This work establishes a strategy for enhancing photosynthetic efficiency for solar fuel production by augmenting natural photosynthetic systems with synthetically tunable abiotic catalysts.
Notes: Recalculated TON
-
Neocarzinostatin-Based Hybrid Biocatalysts for Oxidation Reactions
-
Dalton Trans. 2014, 43, 8344-8354, 10.1039/c4dt00151f
An anionic iron(III)-porphyrin–testosterone conjugate 1-Fe has been synthesized and fully characterized. It has been further associated with a neocarzinostatin variant, NCS-3.24, to generate a new artificial metalloenzyme following the so-called ‘Trojan Horse’ strategy. This new 1-Fe-NCS-3.24 biocatalyst showed an interesting catalytic activity as it was found able to catalyze the chemoselective and slightly enantioselective (ee = 13%) sulfoxidation of thioanisole by H2O2. Molecular modelling studies show that a synergy between the binding of the steroid moiety and that of the porphyrin macrocycle into the protein binding site can explain the experimental results, indicating a better affinity of 1-Fe for the NCS-3.24 variant than testosterone and testosterone-hemisuccinate themselves. They also show that the Fe-porphyrin complex is sandwiched between the two subdomains of the protein providing with good complementarities. However, the artificial cofactor entirely fills the cavity and its metal ion remains widely exposed to the solvent which explains the moderate enantioselectivity observed. Some possible improvements in the “Trojan Horse” strategy for obtaining better catalysts of selective oxidations are presented.
Metal: FeLigand type: PorphyrinHost protein: Neocarzinostatin (variant 3.24)Anchoring strategy: SupramolecularOptimization: ---Notes: ---
-
Neocarzinostatin-Based Hybrid Biocatalysts with a RNase like Activity
-
Bioorg. Med. Chem. 2014, 22, 5678-5686, 10.1016/j.bmc.2014.05.063
A new zinc(II)-cofactor coupled to a testosterone anchor, zinc(II)-N,N-bis(2-pyridylmethyl)-1,3-diamino-propa-2-ol-N′(17′-succinimidyltestosterone) (Zn-Testo-BisPyPol) 1-Zn has been synthesized and fully characterized. It has been further associated with a neocarzinostatin variant, NCS-3.24, to generate a new artificial metalloenzyme following the so-called ‘Trojan horse’ strategy. This new 1-Zn-NCS-3.24 biocatalyst showed an interesting catalytic activity as it was found able to catalyze the hydrolysis of the RNA model HPNP with a good catalytic efficiency (kcat/KM = 13.6 M−1 s−1 at pH 7) that places it among the best artificial catalysts for this reaction. Molecular modeling studies showed that a synergy between the binding of the steroid moiety and that of the BisPyPol into the protein binding site can explain the experimental results, indicating a better affinity of 1-Zn for the NCS-3.24 variant than testosterone and testosterone-hemisuccinate themselves. They also show that the artificial cofactor entirely fills the cavity, the testosterone part of 1-Zn being bound to one the two subdomains of the protein providing with good complementarities whereas its metal ion remains widely exposed to the solvent which made it a valuable tool for the catalysis of hydrolysis reactions, such as that of HPNP. Some possible improvements in the ‘Trojan horse’ strategy for obtaining better catalysts of selective reactions will be further studied.
Metal: ZnLigand type: Poly-pyridineHost protein: Neocarzinostatin (variant 3.24)Anchoring strategy: SupramolecularOptimization: ---Notes: kcat/KM = 13.6 M-1 * s-1
-
Neutralizing the Detrimental Effect of Glutathione on Precious Metal Catalysts
-
J. Am. Chem. Soc. 2014, 136, 8928-8932, 10.1021/ja500613n
We report our efforts to enable transition-metal catalysis in the presence of cellular debris, notably Escherichia coli cell free extracts and cell lysates. This challenging goal is hampered by the presence of thiols, mainly present in the form of glutathione (GSH), which poison precious metal catalysts. To overcome this, we evaluated a selection of oxidizing agents and electrophiles toward their potential to neutralize the detrimental effect of GSH on a Ir-based transfer hydrogenation catalyst. While the bare catalyst was severely inhibited by cellular debris, embedding the organometallic moiety within a host protein led to promising results in the presence of some neutralizing agents. In view of its complementary to natural enzymes, the asymmetric imine reductase based on the incorporation of a biotinylated iridium pianostool complex within streptavidin (Sav) isoforms was selected as a model reaction. Compared to purified protein samples, we show that pretreatment of cell free extracts and cell lysates containing Sav mutants with diamide affords up to >100 TON’s and only a modest erosion of enantioselectivity.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: Reaction in cell-free extract with diamide