495 publications
-
Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes
Review -
BCSJ 2021, 94, 382-396, 10.1246/bcsj.20200316
In recent years, artificial metalloenzymes (ArMs) have become a major research interest in the field of biocatalysis. With the ability to facilitate new-to-nature reactions, researchers have generally prepared them either through intensive protein engineering studies or through the introduction of abiotic transition metals. The aim of this review will be to summarize the major types of ArMs that have been recently developed, as well as to highlight their general reaction scope. A point of emphasis will also be made to discuss the promising ways that the molecular selectivity of ArMs can be applied to in areas of pharmaceutical synthesis, diagnostics, and drug therapy.
Notes: ---
-
Ferritin Encapsulation of Artificial Metalloenzymes: Engineering a Tertiary Coordination Sphere for an Artificial Transfer Hydrogenase
-
Dalton Trans. 2018, 47, 10837-10841, 10.1039/C8DT02224K
Ferritin, a naturally occuring iron-storage protein, plays an important role in nanoengineering and biomedical applications. Upon iron removal, apoferritin was shown to allow the encapsulation of an artificial transfer hydrogenase (ATHase) based on the streptavidin-biotin technology. The third coordination sphere, provided by ferritin, significantly influences the catalytic activity of an ATHase for the reduction of cyclic imines.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Flavohemoglobin: A Semisynthetic Hydroxylase Acting in the Absence of Reductase
-
J. Am. Chem. Soc. 1987, 109, 606-607, 10.1021/ja00236a062
n/a
Notes: ---
-
Fluorescence-Based Assay for the Optimization of the Activity of Artificial Transfer Hydrogenase within a Biocompatible Compartment
-
ChemCatChem 2013, 5, 720-723, 10.1002/cctc.201200834
The time capsules: The transfer hydrogenation of an enone‐bound fluorogenic compound by an artificial metalloenzyme leads to the release of fluorescent compound umbelliferone. Upon encapsulation of the hybrid catalyst inside a biocompatible compartment, the activity of the transfer hydrogenase is maintained for several months, even at micromolar concentrations.
Notes: ---
-
From Enzyme Maturation to Synthetic Chemistry: The Case of Hydrogenases
Review -
Acc. Chem. Res. 2015, 48, 2380-2387, 10.1021/acs.accounts.5b00157
Water splitting into oxygen and hydrogen is one of the most attractive strategies for storing solar energy and electricity. Because the processes at work are multielectronic, there is a crucial need for efficient and stable catalysts, which in addition have to be cheap for future industrial developments (electrolyzers, photoelectrochemicals, and fuel cells). Specifically for the water/hydrogen interconversion, Nature is an exquisite source of inspiration since this chemistry contributes to the bioenergetic metabolism of a number of living organisms via the activity of fascinating metalloenzymes, the hydrogenases. In this Account, we first briefly describe the structure of the unique dinuclear organometallic active sites of the two classes of hydrogenases as well as the complex protein machineries involved in their biosynthesis, their so-called maturation processes. This knowledge allows for the development of a fruitful bioinspired chemistry approach, which has already led to a number of interesting and original catalysts mimicking the natural active sites. More specifically, we describe our own attempts to prepare artificial hydrogenases. This can be achieved via the standard bioinspired approach using the combination of a synthetic bioinspired catalyst and a polypeptide scaffold. Such hybrid complexes provide the opportunity to optimize the system by manipulating both the catalyst through chemical synthesis and the protein component through mutagenesis. We also raise the possibility to reach such artificial systems via an original strategy based on mimicking the enzyme maturation pathways. This is illustrated in this Account by two examples developed in our laboratory. First, we show how the preparation of a lysozyme–{MnI(CO)3} hybrid and its clean reaction with a nickel complex led us to generate a new class of binuclear Ni-Mn H2-evolving catalysts mimicking the active site of [NiFe]-hydrogenases. Then we describe how we were able to rationally design and prepare a hybrid system, displaying remarkable structural similarities to an [FeFe]-hydrogenase, and we show here for the first time that it is catalytically active for proton reduction. This system is based on the combination of HydF, a protein involved in the maturation of [FeFe]-hydrogenase (HydA), and a close mimic of the active site of this class of enzymes. Moreover, the synthetic [Fe2(adt)(CO)4(CN)2]2– (adt2–= aza-propanedithiol) mimic, alone or within a HydF hybrid system, was shown to be able to maturate and activate a form of HydA itself lacking its diiron active site. We discuss the exciting perspectives this “synthetic maturation” opens regarding the “invention” of novel hydrogenases by the chemists.
Notes: ---
-
From "Hemoabzymes" to "Hemozymes": Towards new Biocatalysts for Selective Oxidations
Review -
Chem. Commun. 2015, 51, 2476-2494, 10.1039/c4cc08169b
The design of artificial hemoproteins that could catalyze selective oxidations using clean oxidants such as O2 or H2O2 under ecocompatible conditions constitutes a real challenge for a wide range of industrial applications. In vivo, such reactions are performed by heme-thiolate proteins, cytochromes P450, which catalyze the oxidation of substrates by dioxygen in the presence of electrons delivered from NADPH by cytochrome P450 reductase. Several strategies were used to design new artificial hemoproteins that mimic these enzymes. The first one involved the non-covalent association of synthetic hemes with monoclonal antibodies raised against these cofactors. This led to the first generation of artificial hemoproteins or “hemoabzymes” that displayed a peroxidase activity, and in some cases catalyzed the regioselective nitration of phenols by H2O2/NO2 and the stereoselective oxidation of sulfides by H2O2. The second one involved the non-covalent association of easily affordable non-relevant proteins with metalloporphyrin derivatives, using either the “Trojan Horse strategy” or the “host–guest” strategy. This led to a second generation of artificial hemoproteins or “hemozymes”, some of which were found able to catalyze the stereoselective oxidation of organic compounds such as sulfides and alkenes by H2O2 and KHSO5.
Notes: ---
-
Functionalization of Protein Crystals with Metal Ions, Complexes and Nanoparticles
Review -
Curr. Opin. Chem. Biol. 2018, 43, 68-76, 10.1016/j.cbpa.2017.11.015
Self-assembled proteins have specific functions in biology. With inspiration provided by natural protein systems, several artificial protein assemblies have been constructed via site-specific mutations or metal coordination, which have important applications in catalysis, material and bio-supramolecular chemistry. Similar to natural protein assemblies, protein crystals have been recognized as protein assemblies formed of densely-packed monomeric proteins. Protein crystals can be functionalized with metal ions, metal complexes or nanoparticles via soaking, co-crystallization, creating new metal binding sites by site-specific mutations. The field of protein crystal engineering with metal coordination is relatively new and has gained considerable attention for developing solid biomaterials as well as structural investigations of enzymatic reactions, growth of nanoparticles and catalysis. This review highlights recent and significant research on functionalization of protein crystals with metal coordination and future prospects.
Notes: ---
-
Functionalized Antibodies as Biosensing Materials and Catalysts
Review -
Chem. Lett. 2008, 37, 1184-1189, 10.1246/cl.2008.1184
Monoclonal antibodies have been prepared against water-soluble porphyrins, viologen derivatives, and transition-metal complexes, respectively. These monoclonal antibodies were utilized to devise biosensing and catalytic systems.
Notes: ---
-
Generation of a Functional, Semisynthetic [FeFe]-Hydrogenase in a Photosynthetic Microorganism
-
Energy Environ. Sci. 2018, 11, 3163-3167, 10.1039/C8EE01975D
[FeFe]-Hydrogenases are hydrogen producing metalloenzymes with excellent catalytic capacities, highly relevant in the context of a future hydrogen economy. Here we demonstrate the synthetic activation of a heterologously expressed [FeFe]-hydrogenase in living cells of Synechocystis PCC 6803, a photoautotrophic microbial chassis with high potential for biotechnological energy applications. H2-Evolution assays clearly show that the non-native, semi-synthetic enzyme links to the native metabolism in living cells.
Metal: FeHost protein: HydA1 ([FeFe]-hydrogenase) from C. reinhardtiiAnchoring strategy: ReconstitutionOptimization: Chemical & geneticNotes: ---
-
Generation of a Hybrid Sequence-Specific Single Stranded Deoxyribonuclease
-
Science 1987, 238, 1401-1403, 10.1126/science.3685986
The relatively nonspecific single-stranded deoxyribonuclease, staphylococcal nuclease, was selectively fused to an oligonucleotide binding site of defined sequence to generate a hybrid enzyme. A cysteine was substituted for Lys116 in the enzyme by oligonucleotide-directed mutagenesis and coupled to an oligonucleotide that contained a 3'-thiol. The resulting hybrid enzyme cleaved single-stranded DNA at sites adjacent to the oligonucleotide binding site.
Metal: CaLigand type: UndefinedHost protein: Staphylococcal nucleaseAnchoring strategy: ---Optimization: ---Notes: Engineered sequence specificity
-
Generation of New Artificial Metalloproteins by Cofactor Modification of Native Hemoproteins
Review -
Isr. J. Chem. 2015, 55, 76-84, 10.1002/ijch.201400123
Heme can be removed from a number of native hemoproteins, thus forming corresponding apoproteins, each of which provides a site for binding of a metal complex. In one example, myoglobin, an O2 storage protein, can be reconstituted with iron porphycene to dramatically enhance the O2 affinity. Although it is known that myoglobin has poor enzymatic activity, the insertion of iron corrole or iron porphycene into apomyoglobin increases its H2O2‐dependent peroxidase/peroxygenase activities. Furthermore, reconstitution with manganese porphycene promotes hydroxylation of an inert CH bond. It is also of interest to insert a non‐porphyrinoid complex into an apoprotein. A cavity of apocytochrome c has been found to bind a diiron carbonyl complex, serving as a functional model of diiron hydrogenase. Aponitrobindin has a rigid β‐barrel structure that provides an excellent cavity for covalently anchoring a metal complex. A rhodium complex embedded in the cavity of genetically modified nitrobindin has been found to promote stereoselective polymerization of phenylacetylene.
Notes: ---
-
Generation of New Enzymes via Covalent Modification of Existing Proteins
Review -
Chem. Rev. 2001, 101, 3081-3112, 10.1021/cr000059o
Proteins are versatile molecules for catalyst design. Given the explosive development of molecular biology techniques for gene manipulation and functional selection, genetic approaches for enzyme design are currently in wide use. However, chemical methods provide a means for introducing a diverse range of functionality that does not occur in natural enzymes and cannot be easily incorporated by genetic methods. Thus, chemical modification of proteins remains a valuable tool for protein engineering. This article reviews a variety of approaches in which chemical modification has been used to alter the catalytic properties of existing enzymes to give new catalytic activities to existing enzymes or to impart catalytic activities to proteins normally devoid of enzymatic activity. Since the focus of this review is on the chemistry promoted by these systems, modifications that alter the overall stability or general physical properties of enzymes are not discussed here.
Notes: ---
-
Genetic Engineering of an Artificial Metalloenzyme for Transfer Hydrogenation of a Self-Immolative Substrate in Escherichia coli’s Periplasm
-
J. Am. Chem. Soc. 2018, 140, 13171-13175, 10.1021/jacs.8b07189
Artificial metalloenzymes (ArMs), which combine an abiotic metal cofactor with a protein scaffold, catalyze various synthetically useful transformations. To complement the natural enzymes’ repertoire, effective optimization protocols to improve ArM’s performance are required. Here we report on our efforts to optimize the activity of an artificial transfer hydrogenase (ATHase) using Escherichia coli whole cells. For this purpose, we rely on a self-immolative quinolinium substrate which, upon reduction, releases fluorescent umbelliferone, thus allowing efficient screening. Introduction of a loop in the immediate proximity of the Ir-cofactor afforded an ArM with up to 5-fold increase in transfer hydrogenation activity compared to the wild-type ATHase using purified mutants.
Metal: IrHost protein: Streptavidin (Sav)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Genetic Optimization of Metalloenzymes: Enhancing Enzymes for Non-Natural Reactions
Review -
Angew. Chem. Int. Ed. 2016, 55, 7344-7357, 10.1002/anie.201508816
Artificial metalloenzymes have received increasing attention over the last decade as a possible solution to unaddressed challenges in synthetic organic chemistry. Whereas traditional transition‐metal catalysts typically only take advantage of the first coordination sphere to control reactivity and selectivity, artificial metalloenzymes can modulate both the first and second coordination spheres. This difference can manifest itself in reactivity profiles that can be truly unique to artificial metalloenzymes. This Review summarizes attempts to modulate the second coordination sphere of artificial metalloenzymes by using genetic modifications of the protein sequence. In doing so, successful attempts and creative solutions to address the challenges encountered are highlighted.
Notes: ---
-
Genetic Optimization of the Catalytic Efficiency of Artificial Imine Reductases Based on Biotin−Streptavidin Technology
-
ACS Catal. 2013, 3, 1752-1755, 10.1021/cs400428r
Artificial metalloenzymes enable the engineering of the reaction microenvironment of the active metal catalyst by modification of the surrounding host protein. We report herein the optimization of an artificial imine reductase (ATHase) based on biotin–streptavidin technology. By introduction of lipophilic amino acid residues around the active site, an 8-fold increase in catalytic efficiency compared with the wild type imine reductase was achieved. Whereas substrate inhibition was encountered for the free cofactor and wild type ATHase, two engineered systems exhibited classical Michaelis–Menten kinetics, even at substrate concentrations of 150 mM with measured rates up to 20 min–1.
Notes: ---
-
Going Beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases
-
J. Am. Chem. Soc. 2018, 140, 10250-10262, 10.1021/jacs.8b05194
Well-defined molecular systems for catalytic hydrogen production that are robust, easily generated, and active under mild aqueous conditions remain underdeveloped. Nickel-substituted rubredoxin (NiRd) is one such system, featuring a tetrathiolate coordination environment around the nickel center that is identical to the native [NiFe] hydrogenases and demonstrating hydrogenase-like proton reduction activity. However, until now, the catalytic mechanism has remained elusive. In this work, we have combined quantitative protein film electrochemistry with optical and vibrational spectroscopy, density functional theory calculations, and molecular dynamics simulations to interrogate the mechanism of H2 evolution by NiRd. Proton-coupled electron transfer is found to be essential for catalysis. The coordinating thiolate ligands serve as the sites of protonation, a role that remains debated in the native [NiFe] hydrogenases, with reduction occurring at the nickel center following protonation. The rate-determining step is suggested to be intramolecular proton transfer via thiol inversion to generate a NiIII–hydride species. NiRd catalysis is found to be completely insensitive to the presence of oxygen, another advantage over the native [NiFe] hydrogenase enzymes, with potential implications for membrane-less fuel cells and aerobic hydrogen evolution. Targeted mutations around the metal center are seen to increase the activity and perturb the rate-determining process, highlighting the importance of the outer coordination sphere. Collectively, these results indicate that NiRd evolves H2 through a mechanism similar to that of the [NiFe] hydrogenases, suggesting a role for thiolate protonation in the native enzyme and guiding rational optimization of the NiRd system.
Metal: NiLigand type: Amino acidHost protein: Rubredoxin (Rd)Anchoring strategy: Metal substitutionOptimization: GeneticNotes: TOF = 149 s-1
-
Helichrome: Synthesis and Enzymatic Activity of a Designed Hemeprotein
-
J. Am. Chem. Soc. 1989, 111, 380-381, 10.1021/ja00183a065
n/a
Metal: FeLigand type: PorphyrinHost protein: Artificial constructAnchoring strategy: CovalentOptimization: ---Notes: Only 60 amino acids
-
Hemoabzymes - Different Strategies for Obtaining Artificial Hemoproteins based on Antibodies
Review -
Appl. Biochem. Biotechnol. 1998, 75, 103-127, 10.1007/Bf02787712
Besides existing models of chemical or biotechnological origin for hemoproteins like peroxidases and cytochromes P450, catalytic antibod ies (Abs) with a metalloporphyrin cofactor represent a promising alter native route to catalysts tailored for selective oxidation reactions. A brief overview of the literature shows that, until now, the first strategy for obtaining such artificial hemoproteins has been to produce antipor phyrin Abs, raised against various free-base, N-substituted, Sn-,Pd-,or Fe-porphyrins. Four of them exhibited, in the presence of the corre sponding Fe-porphyrin cofactor, a significant peroxidase activity, with kcat/Km values of 102 to 5 × 103/M/s. This value remained low when com pared to that of peroxidases, probably because neither a proximal ligand of the Fe, nor amino acid residues participating in the catalysis of the heterolytic cleavage of the O—O bond of H2O2, have been induced in those Abs. This strategy has been shown to be insufficient for the elabo ration of effective models of cytochromes P450, because only one set of Abs, raised againstmeso-tetrakis(para-carboxyvinylphenyl)porphyrin, was reported to catalyze the nonstereoselective oxidation of styrene by iodosyl benzene using a Mn-porphyrin cofactor, and attempts to gener ate Abs having binding sites for both the substrate and the metallopor phyrin cofactor, using as a hapten a porphyrin covalently linked to the substrate, were not successful. A second strategy is then proposed, which involves the chemical labeling of antisubstrate Abs with a metallopor phyrin. As an example, preliminary results are presented on the covalent linkage of an Fe-porphyrin to an antiestradiol Ab, in order to obtain semisynthetic catalytic Abs able to catalyze the selective oxidation of steroids.
Notes: ---
-
Hemoabzymes: Towards New Biocatalysts for Selective Oxidations
-
J. Immunol. Methods 2002, 269, 39-57, 10.1016/S0022-1759(02)00223-5
Catalytic antibodies with a metalloporphyrin cofactor or «hemoabzymes», used as models for hemoproteins like peroxidases and cytochrome P450, represent a promising route to catalysts tailored for selective oxidation reactions. A brief overview of the literature shows that until now, the first strategy for obtaining such artificial hemoproteins has been to produce antiporphyrin antibodies, raised against various free-base, N-substituted Sn-, Pd- or Fe-porphyrins. Five of them exhibited, in the presence of the corresponding Fe-porphyrin cofactor, a significant peroxidase activity, with kcat/Km values of 3.7×103–2.9×105 M−1 min−1. This value remained, however, low when compared to that of peroxidases. This strategy has also led to a few models of cytochrome P450. The best of them, raised against a water-soluble tin(IV) porphyrin containing an axial α-naphtoxy ligand, was reported to catalyze the stereoselective oxidation of aromatic sulfides by iodosyl benzene using a Ru(II)-porphyrin cofactor. The relatively low efficiency of the porphyrin–antibody complexes is probably due, at least in part, to the fact that no proximal ligand of Fe has been induced in those antibodies. We then proposed to use, as a hapten, microperoxidase 8 (MP8), a heme octapeptide in which the imidazole side chain of histidine 18 acts as a proximal ligand of the iron atom. This led to the production of seven antibodies recognizing MP8, the best of them, 3A3, binding it with an apparent binding constant of 10−7 M. The corresponding 3A3–MP8 complex was found to have a good peroxidase activity characterized by a kcat/Km value of 2×106 M−1 min−1, which constitutes the best one ever reported for an antibody–porphyrin complex. Active site topology studies suggest that the binding of MP8 occurs through interactions of its carboxylate substituents with amino acids of the antibody and that the protein brings a partial steric hindrance of the distal face of the heme of MP8. Consequently, the use of the 3A3–MP8 complexes for the selective oxidation of substrates, such as sulfides, alkanes and alkenes will be undertaken in the future.
Metal: FeLigand type: PorphyrinHost protein: Antibody 3A3Anchoring strategy: SupramolecularOptimization: ---Notes: kcat/KM = 33000 M-1 * s-1
-
Hemozymes Peroxidase Activity Of Artificial Hemoproteins Constructed From the Streptomyces Lividans Xylanase A and Iron(III)-Carboxy-Substituted Porphyrins
-
Bioconjug. Chem. 2008, 19, 899-910, 10.1021/bc700435a
To develop artificial hemoproteins that could lead to new selective oxidation biocatalysts, a strategy based on the insertion of various iron-porphyrin cofactors into Xylanase A (Xln10A) was chosen. This protein has a globally positive charge and a wide enough active site to accommodate metalloporphyrins that possess negatively charged substituents such as microperoxidase 8 (MP8), iron(III)-tetra-α4-ortho-carboxyphenylporphyrin (Fe(ToCPP)), and iron(III)-tetra-para-carboxyphenylporphyrin (Fe(TpCPP)). Coordination chemistry of the iron atom and molecular modeling studies showed that only Fe(TpCPP) was able to insert deeply into Xln10A, with a KD value of about 0.5 µM. Accordingly, Fe(TpCPP)-Xln10A bound only one imidazole molecule, whereas Fe(TpCPP) free in solution was able to bind two, and the UV–visible spectrum of the Fe(TpCPP)-Xln10A-imidazole complex suggested the binding of an amino acid of the protein on the iron atom, trans to the imidazole. Fe(TpCPP)-Xln10A was found to have peroxidase activity, as it was able to catalyze the oxidation of typical peroxidase cosubstrates such as guaiacol and o-dianisidine by H2O2. With these two cosubstrates, the KM value measured with the Fe(TpCPP)-Xln10A complex was higher than those values observed with free Fe(TpCPP), probably because of the steric hindrance and the increased hydrophobicity caused by the protein around the iron atom of the porphyrin. The peroxidase activity was inhibited by imidazole, and a study of the pH dependence of the oxidation of o-dianisidine suggested that an amino acid with a pKA of around 7.5 was participating in the catalysis. Finally, a very interesting protective effect against oxidative degradation of the porphyrin was provided by the protein.
Metal: FeLigand type: PorphyrinHost protein: Xylanase A (XynA)Anchoring strategy: SupramolecularOptimization: ---Notes: kcat/KM = 1083 M-1 * s-1
-
Heteromeric Three-Stranded Coiled Coils Designed Using a Pb(ii)(Cys)3 Template Mediated Strategy
-
Nat. Chem. 2020, 12, 405-411, 10.1038/s41557-020-0423-6
Three-stranded coiled coils are peptide structures constructed from amphipathic heptad repeats. Here we show that it is possible to form pure heterotrimeric three-stranded coiled coils by combining three distinct characteristics: (1) a cysteine sulfur layer for metal coordination, (2) a thiophilic, trigonal pyramidal metalloid (Pb(ii)) that binds to these sulfurs and (3) an adjacent layer of reduced steric bulk generating a cavity where water can hydrogen bond to the cysteine sulfur atoms. Cysteine substitution in an a site yields Pb(ii)A2B heterotrimers, while d sites provide pure Pb(ii)C2D or Pb(ii)CD2 scaffolds. Altering the metal from Pb(ii) to Hg(ii) or shifting the relative position of the sterically less demanding layer removes heterotrimer specificity. Because only two of the eight or ten hydrophobic layers are perturbed, catalytic sites can be introduced at other regions of the scaffold. A Zn(ii)(histidine)3(H2O) centre can be incorporated at a remote location without perturbing the heterotrimer selectivity, suggesting a unique strategy to prepare dissymmetric catalytic sites within self-assembling de novo-designed proteins.
Ligand type: Amino acidHost protein: De novo-designed proteinAnchoring strategy: ---Optimization: ---Notes: PDB: 6EGP, 6MCD
-
High-Level Secretion of Recombinant Full-Length Streptavidin in Pichia Pastoris and its Application to Enantioselective Catalysis
-
Protein Expression Purif. 2014, 93, 54-62, 10.1016/j.pep.2013.10.015
Artificial metalloenzymes result from the incorporation of a catalytically competent biotinylated organometallic moiety into full-length (i.e. mature) streptavidin. With large-scale industrial biotechnology applications in mind, large quantities of recombinant streptavidin are required. Herein we report our efforts to produce wild-type mature and biotin-free streptavidin using the yeast Pichia pastoris expression system. The streptavidin gene was inserted into the expression vector pPICZαA in frame with the Saccharomyces cerevisiae α-mating factor secretion signal. In a fed-batch fermentation using a minimal medium supplemented with trace amounts of biotin, functional streptavidin was secreted at approximately 650 mg/L of culture supernatant. This yield is approximately threefold higher than that from Escherichia coli, and although the overall expression process takes longer (ten days vs. two days), the downstream processing is simplified by eliminating denaturing/refolding steps. The purified streptavidin bound ∼3.2 molecules of biotin per tetramer. Upon incorporation of a biotinylated piano-stool catalyst, the secreted streptavidin displayed identical properties to streptavidin produced in E. coli by showing activity as artificial imine reductase.
Notes: Sav expression in E. coli
Notes: Sav expression in P. pastoris
-
Highly Efficient Cyclic Dinucleotide Based Artificial Metalloribozymes for Enantioselective Friedel–Crafts Reactions in Water
-
Angew. Chem. Int. Ed. 2020, 59, 3444-3449, 10.1002/anie.201912962
The diverse secondary structures of nucleic acids are emerging as attractive chiral scaffolds to construct artificial metalloenzymes (ArMs) for enantioselective catalysis. DNA‐based ArMs containing duplex and G‐quadruplex scaffolds have been widely investigated, yet RNA‐based ArMs are scarce. Here we report that a cyclic dinucleotide of c‐di‐AMP and Cu2+ ions assemble into an artificial metalloribozyme (c‐di‐AMP⋅Cu2+) that enables catalysis of enantioselective Friedel–Crafts reactions in aqueous media with high reactivity and excellent enantioselectivity of up to 97 % ee. The assembly of c‐di‐AMP⋅Cu2+ gives rise to a 20‐fold rate acceleration compared to Cu2+ ions. Based on various biophysical techniques and density function theory (DFT) calculations, a fine coordination structure of c‐di‐AMP⋅Cu2+ metalloribozyme is suggested in which two c‐di‐AMP form a dimer scaffold and the Cu2+ ion is located in the center of an adenine‐adenine plane through binding to two N7 nitrogen atoms and one phosphate oxygen atom.
-
Highly Malleable Harm-Binding Site of the Haemoprotein HasA Permits Stable Accommodation of Bulky Tetraphenylporphycenes
-
RSC Adv. 2019, 9, 18697-18702, 10.1039/c9ra02872b
Iron(III)- and cobalt(III)-9,10,19,20-tetraphenylporphycenes, which possess bulky phenyl groups at the four meso positions of porphycene, were successfully incorporated into the haem acquisition protein HasA secreted by Pseudomonas aeruginosa. Crystal structure analysis revealed that loops surrounding the haem-binding site are highly flexible, remodelling themselves to accommodate bulky metal complexes with significantly different structures from the native haem cofactor.
Ligand type: PorphyceneHost protein: HasAAnchoring strategy: DativeOptimization: Chemical & geneticReaction: ---Max TON: ---ee: ---PDB: ---Notes: ---
-
Histidine orientation in artificial peroxidase regioisomers as determined by paramagnetic NMR shifts
-
Chem. Commun. 2021, 57, 990-993, 10.1039/d0cc06676a
Fe-Mimochrome VI*a is a synthetic peroxidase and peroxygenase, featuring two different peptides that are covalently-linked to deuteroheme. To perform a systematic structure/function correlation, we purposely shortened the distance between the distal peptide and the heme, allowing for the separation and characterization of two regioisomers. They differ in both His axial-ligand orientation, as determined by paramagnetic NMR shifts, and activity. These findings highlight that synthetic metalloenzymes may provide an efficient tool for disentangling the role of axial ligand orientation over peroxidase activity.
Metal: FeLigand type: Deuteroporphyrin IXHost protein: Synthetic peptideAnchoring strategy: CovalentOptimization: ---Notes: NMR studies of the complexes, no catalysis
-
Human Carbonic Anhydrase II as Host Protein for the Creation of Artificial Metalloenzymes: The Asymmetric Transfer Hydrogenation of Imines
-
Chem. Sci. 2013, 4, 3269, 10.1039/c3sc51065d
In the presence of human carbonic anhydrase II, aryl-sulfonamide-bearing IrCp* pianostool complexes catalyze the asymmetric transfer hydrogenation of imines. Critical cofactor–protein interactions revealed by the X-ray structure of [(η5-Cp*)Ir(pico 4)Cl] 9 ⊂ WT hCA II were genetically optimized to improve the catalytic performance of the artificial metalloenzyme (68% ee, kcat/KM 6.11 × 10−3 min−1 mM−1).
Metal: IrHost protein: Human carbonic anhydrase II (hCAII)Anchoring strategy: SupramolecularOptimization: Chemical & geneticNotes: ---
-
Hybrid Catalysts as Lewis Acid
Review -
Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications 2018, 225-251, 10.1002/9783527804085.ch8
Lewis acid catalysis is undisputedly of great significance for synthetic chemistry. Hence, many hybrid catalysts have been designed that can function as Lewis acid. These hybrid catalysts are based on DNA, protein, or peptide scaffolds. In this chapter an overview of the hybrid catalysts reported for three important classes of Lewis acid‐catalyzed reactions is given: C–C bond‐forming reactions, C–X bond‐forming reactions, and hydrolysis reactions.
Notes: Book chapter
-
Hybrid Catalysts for C-H Activation and Other X-H Insertion Reactions
Review -
Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications 2018, 253-284, 10.1002/9783527804085.ch9
Herein we summarize the current state of the art in the field of artificial metalloenzymes for enantioselective C–H activation and related X–H insertion as well as cyclopropanation reactions. Three complementary strategies are presented: (i) the creation of artificial metalloenzymes upon incorporation of an organometallic catalyst precursor within a protein scaffold, (ii) metal or cofactor substitution in hemoproteins to access novel reactivities, and (iii) repurposing of hemoproteins. An emphasis is placed on directed evolution strategies to improve the performance of these enantioselective artificial metalloenzymes.
Notes: Book chapter
-
Hybrid Catalysts for Other C-C and C-X Bond Formation Reactions
Review -
Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications 2018, 285-319, 10.1002/9783527804085.ch10
In this chapter, applications of hybrid catalysts in some of the most important C–C and C–X bond formation reactions are described. Included are (i) polypeptide and oligonucleotide scaffolds (mostly modified with phosphanes for palladium‐catalyzed allylic substitution), (ii) palladium‐catalyzed cross‐coupling reactions catalyzed by dative, supramolecular, and covalently assembled hybrid catalysts, (iii) rhodium‐modified protein catalysts for hydroformylation reactions, (iv) rhodium hybrid catalysts for phenylacetylene polymerization, and (v) ruthenium‐based hybrid catalysts for the ring‐opening polymerization, cross‐, and ring‐closing metathesis reactions of alkenes. Examples are used to provide insight in the most important aspects for the design of hybrid catalysts for these reactions.
Notes: Book chapter
-
Hybrid Catalysts for Oxidation Reactions
Review -
Artificial Metalloenzymes and MetalloDNAzymes in Catalysis: From Design to Applications 2018, 199-224, 10.1002/9783527804085.ch7
Artificial metalloenzymes broadens the scope of possibilities for catalysis at the crossroad of biocatalysis and metal‐based catalysis. The content of this chapter illustrates this outline in the field of oxidation, thanks to remarkable achievements for epoxidation and sulfoxidation in particular. Selectivity, especially enantioselectivity, is benchmarked based on six design strategies (ranging from protein engineering to de novo design), revealing that artificial systems may compete natural ones.
Notes: Book chapter